Advertisement

Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer

  • D. A. Nesterenko
  • T. Eronen
  • A. Kankainen
  • L. Canete
  • A. Jokinen
  • I. D. Moore
  • H. Penttilä
  • S. Rinta-Antila
  • A. de Roubin
  • M. Vilen
Special Article - New Tools and Techniques
  • 70 Downloads

Abstract.

The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a position-sensitive multichannel-plate ion detector. Mass measurements of stable 85 Rb \( ^{+}\) and 87 Rb \( ^{+}\) ions with well-known mass values show that relative uncertainties \( \Delta m/m \leq 7\cdot 10^{-10}\) are possible to reach with the PI-ICR technique at JYFLTRAP. The significant improvement both in resolving power and in precision compared to the conventional Time-of-Flight Ion Cyclotron Resonance technique will enable measurements of close-lying isomeric states and of more exotic isotopes as well as ultra-high precision measurements required, e.g., for neutrino physics. In addition, a new phase-dependent cleaning method based on the differences in the accumulated cyclotron motion phases has been demonstrated with short-lived 127 In \( ^{+}\) and 127m In \( ^{+}\) ions.

References

  1. 1.
    K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T152, 014017 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    T. Eronen, A. Kankainen, J. Äystö, Prog. Part. Nucl. Phys. 91, 259 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    T. Eronen, J.C. Hardy, Eur. Phys. J. A 48, 48 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    S. Eliseev, T. Eronen, Y.N. Novikov, Int. J. Mass Spectrom. 349-350, 102 (2013)CrossRefGoogle Scholar
  5. 5.
    G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    M. König, G. Bollen, H.J. Kluge, T. Otto, J. Szerypo, Int. J. Mass Spectrom. Ion Process. 142, 95 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    S. George et al., Phys. Rev. Lett. 98, 162501 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    S. George, K. Blaum, F. Herfurth, A. Herlert, M. Kretzschmar, S. Nagy, S. Schwarz, L. Schweikhard, C. Yazidjian, Int. J. Mass Spectrom. 264, 110 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Goncharov, K. Blaum, M. Block, C. Droese, S. Eliseev, F. Herfurth, E. Minaya Ramirez, Y.N. Novikov, L. Schweikhard, K. Zuber, Phys. Rev. C 84, 028501 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    D.A. Nesterenko et al., J. Phys. G: Nucl. Part. Phys. 44, 065103 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    J. Hakala et al., Eur. Phys. J. A 47, 129 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    S. Eliseev, K. Blaum, M. Block, C. Droese, M. Goncharov, E. Minaya Ramirez, D.A. Nesterenko, Y.N. Novikov, L. Schweikhard, Phys. Rev. Lett. 110, 082501 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    S. Eliseev et al., Appl. Phys. B 114, 107 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    D.A. Nesterenko et al., Phys. Rev. C 90, 042501 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    S. Eliseev et al., Phys. Rev. Lett. 115, 062501 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    F. Köhler et al., Nat. Commun. 7, 10246 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    T. Eronen et al., Eur. Phys. J. A 48, 46 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    G. Bollen, H.-J. Kluge, M. König, T. Otto, G. Savard, H. Stolzenberg, R.B. Moore, G. Rouleau, G. Audi, I. Collaboration, Phys. Rev. C 46, R2140 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    G. Savard, S. Becker, G. Bollen, H.J. Kluge, R.B. Moore, T. Otto, L. Schweikhard, H. Stolzenberg, U. Wiess, Phys. Lett. A 158, 247 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    M. Rosenbusch, K. Blaum, C. Borgmann, S. Kreim, M. Kretzschmar, D. Lunney, L. Schweikhard, F. Wienholtz, R. Wolf, Int. J. Mass Spectrom. 325-327, 51 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Wolf et al., Int. J. Mass Spectrom. 349-350, 123 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Ringle, G. Bollen, P. Schury, S. Schwarz, T. Sun, Int. J. Mass Spectrom. 262, 33 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Eliseev, M. Block, A. Chaudhuri, F. Herfurth, H.-J. Kluge, A. Martin, C. Rauth, G. Vorobjev, Int. J. Mass Spectrom. 262, 45 (2007)CrossRefGoogle Scholar
  26. 26.
    A.T. Gallant et al., Phys. Rev. C 85, 044311 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    T. Eronen, V.-V. Elomaa, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, S. Rahaman, J. Rissanen, C. Weber, J. Äystö, Nucl. Instrum. Methods Phys. Res. B 266, 4527 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    G. Gabrielse, L. Haarsma, S. Rolston, Int. J. Mass Spectrom. Ion Process. 88, 319 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    G. Gabrielse, Int. J. Mass Spectrom. 279, 107 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Kretzschmar, Int. J. Mass Spectrom. 309, 30 (2012)CrossRefGoogle Scholar
  32. 32.
    K. Blaum, Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    G. Bollen, S. Becker, H.-J. Kluge, M. Knig, R. Moore, T. Otto, H. Raimbault-Hartmann, G. Savard, L. Schweikhard, H. Stolzenberg, Nucl. Instrum. Methods Phys. Res. A 368, 675 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    M. Block et al., Eur. Phys. J. D 45, 39 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    P. Dupré, D. Lunney, Int. J. Mass Spectrom. 379, 33 (2015)CrossRefGoogle Scholar
  36. 36.
    I. Moore et al., Nucl. Instrum. Methods Phys. Res. B 317, 208 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    P. Karvonen, I. Moore, T. Sonoda, T. Kessler, H. Penttilä, K. Peräjärvi, P. Ronkanen, J. Äystö, Nucl. Instrum. Methods Phys. Res. B 266, 4794 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    A. Nieminen, J. Huikari, A. Jokinen, J. Äystö, P. Campbell, E. Cochrane, Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    F. Herfurth et al., Nucl. Instrum. Methods Phys. Res. A 469, 254 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    T. Brunner et al., Nucl. Instrum. Methods Phys. Res. A 676, 32 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    MCP delay line detector, RoentDek Handels GmbH, https://doi.org/www.roentdek.de
  42. 42.
    SIMION, Scientific Instrument Services, Inc. (SIS), https://doi.org/simion.com
  43. 43.
    J. Ketter, T. Eronen, M. Höcker, S. Streubel, K. Blaum, Int. J. Mass Spectrom. 358, 1 (2014)CrossRefGoogle Scholar
  44. 44.
  45. 45.
    A. Kellerbauer, K. Blaum, G. Bollen, F. Herfurth, H.-J. Kluge, M. Kuckein, E. Sauvan, C. Scheidenberger, L. Schweikhard, Eur. Phys. J. D 22, 53 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    R.T. Birge, Phys. Rev. 40, 207 (1932)ADSCrossRefGoogle Scholar
  47. 47.
    G. Audi, F. Kondev, M. Wang, W. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • D. A. Nesterenko
    • 1
  • T. Eronen
    • 1
  • A. Kankainen
    • 1
  • L. Canete
    • 1
  • A. Jokinen
    • 1
  • I. D. Moore
    • 1
  • H. Penttilä
    • 1
  • S. Rinta-Antila
    • 1
  • A. de Roubin
    • 1
  • M. Vilen
    • 1
  1. 1.University of JyväskyläJyväskyläFinland

Personalised recommendations