Advertisement

Energy dependence of light (anti)nuclei and (anti)hypertriton production in the Au-Au collision from \(\sqrt{s_{NN}} = 11.5\) to 5020 GeV

  • Zi-Jian Dong
  • Quan-Yu Wang
  • Gang Chen
  • Zhi-Lei She
  • Yu-Liang Yan
  • Feng-Xian Liu
  • Dai-Mei Zhou
  • Ben-Hao Sa
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract.

The energy dependence of light (anti)nuclei and (anti)hypertriton production are investigated in central Au-Au collisions from AGS up to LHC energies at midrapidity, using the parton and hadron cascade model (PACIAE) together with the dynamically constrained phase-space coalescence model(DCPC). We find that the yields, yield ratios of the antiparticles to their corresponding particles, the coalescence parameters \(B_A\) and the strangeness population factor \(s_3\) of light (anti)nuclei and (anti)hypertriton all show strong dependences on the energy. Furthermore, we analyze and discuss the strangeness population factor \(s_3\) and the coalescence parameters \(B_A\), and find a transition point near 20 GeV. These results thus suggest, in relativistic heavy-ion collisions, the potential usefulness of the \(s_3\) and \(B_A\) of light nuclei production as an indirect probe of the transition point related to the QCD critical phenomena. The results from PACIAE+DCPC model are well consistent with experimental data within the error margin.

References

  1. 1.
    C.D. Anderson, Phys. Rev. 43, 491 (1933)ADSCrossRefGoogle Scholar
  2. 2.
    O. Chamberlain, E. Segrè, C. Wiegand, Phys. Rev. 100, 947 (1955)ADSCrossRefGoogle Scholar
  3. 3.
    B. Cork, G.R. Lambertson, O. Piccioni et al., Phys. Rev. 104, 1193 (1956)ADSCrossRefGoogle Scholar
  4. 4.
    D.E. Dorfan, J. Eades, L.M. Lederman et al., Phys. Rev. Lett. 14, 1003 (1965)ADSCrossRefGoogle Scholar
  5. 5.
    Y.M. Antipov et al., Yad. Fiz. 12, 311 (1970)Google Scholar
  6. 6.
    N.K. Vishnevsky et al., Yad. Fiz. 20, 694 (1974)Google Scholar
  7. 7.
    M. Danysz, J. Pniewski, Philos. Mag. Ser. 7 44, 348 (1953)CrossRefGoogle Scholar
  8. 8.
    STAR Collaboration (H. Agakishiev et al.), Nature 473, 353 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    STAR Collaboration (B.I. Abelev et al.), Science 328, 58 (2010)CrossRefGoogle Scholar
  10. 10.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 024901 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    STAR Collaboration, Studying the phase diagram of QCD matter at RHIC (2014) https://doi.org/drupal.star.bnl.gov/STAR/starnotes/public/sn0598
  12. 12.
  13. 13.
    STAR Collaboration, Phys. Rev. C 97, 054909 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    S. Natasha for the ALICE Collaboration, J. Phys. G: Nucl. Part. Phys. 38, 124189 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    ALICE Collaboration, Phys. Rev. C 97, 024615 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    NA49 Collaboration (T. Anticic et al.), Phys. Rev. C 94, 044906 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    ALICE Collaboration, arXiv:1710.07531v1 [nucl-ex] (2017)Google Scholar
  19. 19.
    S.T. Butler, C.A. Pearson, Phys. Rev. 129, 836 (1963)ADSCrossRefGoogle Scholar
  20. 20.
    A. Schwarzschild, C. Zupancic, Phys. Rev. 129, 854 (1963)ADSCrossRefGoogle Scholar
  21. 21.
    H.H. Gutbrod, A. Sandoval, P.J. Johansen et al., Phys. Rev. Lett. 37, 667 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    J. Gosset, H.H. Gutbrod, W.G. Meyer et al., Phys. Rev. C 16, 629 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    M.C. Lemaire, S. Nagamiya, S. Schnetzer et al., Phys. Lett. B 85, 38 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    V. Topor Pop, S. Das Gupta, Phys. Rev. C 81, 054911 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    A. Andronic, P. Braun-Munzinger, J. Stachel et al., Phys. Lett. B 697, 203 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R. Mattiello, H. Sorge, H. Stocker et al., Phys. Rev. C 55, 1443 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    L.W. Chen, C.M. Ko, Phys. Rev. C 73, 044903 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    S. Zhang, J.H. Chen, H. Crawford et al., Phys. Lett. B 684, 224 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    P. Liu, J.H. Chen, Y.G. Ma, S. Zhang, Nucl. Sci. Tech. 28, 55 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Xue, Y.G. Ma, J.H. Chen et al., Phys. Rev. C 85, 064912 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    C.S. Zhou, Y.G. Ma, S. Zhang, Eur. Phys. J. A 52, 354 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    N. Shah, Y.G. Ma, J.H. Chen et al., Phys. Lett. B 754, 6 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    L.L. Zhu, C.M. Ko, X.J. Yin, Phys. Rev. C 92, 064911 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    J. Steinheimer, K. Gudima, A. Botvina et al., Phys. Lett. B 714, 85 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    B.H. Sa, D.M. Zhou, Y.L. Yan et al., Comput. Phys. Commun. 183, 333 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Y.L. Yan, G. Chen, X.M. Li et al., Phys. Rev. C 85, 024907 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    J.L. Wang, D.K. Li, H.J. Li et al., Int. J. Mod. Phys. E 23, 1450088 (2014)CrossRefGoogle Scholar
  38. 38.
    G. Chen, Y.L. Yan, D.S. Li et al., Phys. Rev. C 86, 054910 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    G. Chen, H. Chen, J. Wu et al., Phys. Rev. C 88, 034908 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    G. Chen, H. Chen, J.L. Wang et al., J. Phys. G: Nucl. Part. Phys. 41, 115102 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Z.L. She, G. Chen et al., Eur. Phys. J. A 52, 93 (2016)CrossRefGoogle Scholar
  42. 42.
    T. Sjostrand, S. Mrenna, P. Skands, J. High Energy Phys. 05, 026 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    B.L. Combridge, J. Kripfgang, J. Ranft, Phys. Lett. B 70, 234 (1977)ADSCrossRefGoogle Scholar
  44. 44.
    G.Y. Shao, X.Y. Gao, Z.D. Tang, N. Gao, Nucl. Sci. Tech. 27, 151 (2016)CrossRefGoogle Scholar
  45. 45.
    X.H. Jin, J.H. Chen, Y.G. Ma, S. Zhang, Nucl. Sci. Tech. 29, 54 (2018)CrossRefGoogle Scholar
  46. 46.
    K. Stowe, An Introduction to Thermodynamics and Statistical Mechanics (Cambridge University, New York) 2007Google Scholar
  47. 47.
    R. Kubo, Statistical Mechanics-An Advanced Course with Problems and Solutions (North-Holland, Amsterdam, 1965)Google Scholar
  48. 48.
    S. Hamieh, K. Redlich, A. Tounsi, Phys. Lett. B 486, 61 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    Ning Yu for the STAR Collaboration, Nucl. Phys. A 967, 788 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 024901 (2011)CrossRefGoogle Scholar
  51. 51.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044909 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    PHOBOS Collaboration (B. Alver et al.), Phys. Rev. C 94, 024903 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012)CrossRefGoogle Scholar
  54. 54.
    P. Michal, L. Jean, P. Vojt et al., Phys. Rev. C 88, 034907 (2013)CrossRefGoogle Scholar
  55. 55.
    STAR Collaboration (C. Adler et al.), Phys. Rev. Lett. 87, 262301 (2001)CrossRefGoogle Scholar
  56. 56.
    PHENIX Collaboration, arXiv:1410.2559v1 [nucl-ex] (2014)Google Scholar
  57. 57.
    K.J. Sun, L.W. Chen, Phys. Rev. C 95, 044905 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    ALICE Collaboration, Phys. Lett. B 754, 360 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    X.F. Luo, N. Xu, Nucl. Sci. Tech. 28, 112 (2017)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zi-Jian Dong
    • 1
  • Quan-Yu Wang
    • 1
  • Gang Chen
    • 1
  • Zhi-Lei She
    • 1
  • Yu-Liang Yan
    • 2
  • Feng-Xian Liu
    • 1
  • Dai-Mei Zhou
    • 3
  • Ben-Hao Sa
    • 2
    • 3
  1. 1.School of Mathematics and Physics; Network and Educational Technology CenterChina University of GeosciencesWuhanChina
  2. 2.China Institute of Atomic EnergyBeijingChina
  3. 3.Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle PhysicsCentral China Normal UniversityWuhanChina

Personalised recommendations