Advertisement

Corrections of two-photon interactions in the fine and hyperfine structure of the P-energy levels of muonic hydrogen

  • A. E. Dorokhov
  • N. I. Kochelev
  • A. P. Martynenko
  • F. A. Martynenko
  • A. E. Radzhabov
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract.

In the framework of the quasipotential method in quantum electrodynamics we calculate corrections to the nuclear structure proportional to \( r_N^2\) from two-photon exchange amplitudes in the fine and hyperfine structure of P-states in muonic hydrogen, as well as the photon-photon interaction amplitudes, leading to the exchange of the axial vector meson. In constructing the quasipotential of the muon-nucleus interaction, we use the method of projection operators on states of two particles with a definite spin and total angular momentum. Analytical calculation of the matrix elements is performed and contributions to the fine and hyperfine structure of the \( 2P_{1/2}\) and \( 2P_{3/2}\) levels are obtained.

References

  1. 1.
    R. Pohl, A. Antognini, F. Nez et al., Nature 466, 213 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    A. Antognini et al., Science 339, 417 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    A. Antognini et al., Ann. Phys. (N.Y.) 331, 127 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    R. Pohl, F. Nez, L.M.P. Fernandes et al., Science 353, 669 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Ma et al., Int. J. Mod. Phys. Conf. Ser. 40, 1660046 (2016)CrossRefGoogle Scholar
  6. 6.
    FAMU Collaboration (A. Adamczak et al.), JINST 11, P05007 (2016)CrossRefGoogle Scholar
  7. 7.
    CREMA Collaboration (R. Pohl), J. Phys. Soc. Jpn. 85, 091003 (2016)CrossRefGoogle Scholar
  8. 8.
    P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016) (CODATA Recommended Values of the Fundamental Physical Constants: 2014)ADSCrossRefGoogle Scholar
  9. 9.
    I. Sick, Prog. Part. Nucl. Phys. 67, 473 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    C.E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    A. Beyer et al., Science 358, 79 (2017)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Fleurbaey et al., Phys. Rev. Lett. 120, 183001 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    R.N. Faustov, A.P. Martynenko, G.A. Martynenko, V.V. Sorokin, Phys. Lett. B 733, 354 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    R.N. Faustov, A.P. Martynenko, G.A. Martynenko, V.V. Sorokin, Phys. Rev. A 90, 012520 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    R.N. Faustov, A.P. Martynenko, F.A. Martynenko, V.V. Sorokin, Phys. Lett. B 775, 79 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    A.E. Dorokhov, N.I. Kochelev, A.P. Martynenko, F.A. Martynenko, R.N. Faustov, Phys. Part. Nucl. Lett. 14, 857 (2017) arXiv:1704.07702 [hep-ph]CrossRefGoogle Scholar
  17. 17.
    A.E. Dorokhov, N.I. Kochelev, A.P. Martynenko, F.A. Martynenko, A.E. Radzhabov, Phys. Lett. B 776, 105 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    A.E. Dorokhov, N.I. Kochelev, A.P. Martynenko, F.A. Martynenko, A.E. Radzhabov, R.N. Faustov, J. Phys. Conf. Ser. 938, 012042 (2017)CrossRefGoogle Scholar
  19. 19.
    M.I. Eides, H. Grotch, V.A. Shelyuto, Theory of Light Hydrogenic Bound States, Springer Tracts in Modern Physics, Vol. 222 (Springer, Berlin, Heidelbeg, New York, 2007)Google Scholar
  20. 20.
    H. Grotch, D.R. Yennie, Rev. Mod. Phys. 41, 350 (1969)ADSCrossRefGoogle Scholar
  21. 21.
    E. Borie, Ann. Phys. 327, 733 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    C.E. Carlson, M. Vanderhaeghen, Annu. Rev. Nucl. Part. Sci. 57, 171 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    O. Tomalak, M. Vanderhaeghen, Eur. Phys. J. A 51, 24 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    O. Tomalak, M. Vanderhaeghen, Phys. Rev. D 90, 013006 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    C. Peset, A. Pineda, Nucl. Phys. B 887, 69 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    C. Peset, A. Pineda, JHEP 04, 060 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    A.P. Martynenko, R.N. Faustov, J. Exp. Theor. Phys. 98, 39 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    R.N. Faustov, A.P. Martynenko, G.A. Martynenko, V.V. Sorokin, Phys. Rev. A 92, 052512 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    A.A. Krutov, A.P. Martynenko, F.A. Martynenko, O.S. Sukhorukova, Phys. Rev. A 94, 062505 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    V.B. Berestetskii, E.M. Lifshits, L.P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1980)Google Scholar
  31. 31.
    K. Pachucki, Phys. Rev. A 53, 2092 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    U.D. Jentschura, Ann. Phys. 326, 500 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S.G. Karshenboim, V.G. Ivanov, E.Yu. Korzinin, V.A. Shelyuto, Phys. Rev. A 81, 060501 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    S.G. Karshenboim, E.Yu. Korzinin, V.A. Shelyuto, V.G. Ivanov, J. Phys. Chem. Ref. Data 44, 031202 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    B. Franke et al., Eur. Phys. J. D 71, 341 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    J.J. Krauth et al., Ann. Phys. 366, 168 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    J.A.M. Vermaseren, FORM, arXiv:math-ph/0010025Google Scholar
  38. 38.
    J.L. Friar, Ann. Phys. 122, 151 (1979)ADSCrossRefGoogle Scholar
  39. 39.
    A.P. Martynenko, A.A. Krutov, R.N. Shamsutdinov, Phys. At. Nucl. 77, 786 (2014)CrossRefGoogle Scholar
  40. 40.
    F. Hagelstein, V. Pascalutsa, PoS CD15, 077 (2016)Google Scholar
  41. 41.
    H.Q. Zhou, H.R. Pang, Phys. Rev. A 92, 032512 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    N.T. Huong, E. Kou, B. Moussallam, Phys. Rev. D 93, 114005 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    R.N. Cahn, Phys. Rev. D 35, 3342 (1987)ADSCrossRefGoogle Scholar
  44. 44.
    V. Pascalutsa, V. Pauk, M. Vanderhaeghen, Phys. Rev. D 85, 116001 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    G.A. Schuler, F.A. Berends, R. van Gulik, Nucl. Phys. B 523, 423 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    L3 Collaboration (P. Achard et al.), Phys. Lett. B 526, 269 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    L3 Collaboration (P. Achard et al.), JHEP 03, 018 (2007)CrossRefGoogle Scholar
  48. 48.
    H. Aihara et al., Phys. Rev. D 38, 1 (1988)ADSCrossRefGoogle Scholar
  49. 49.
    D.F. Flamm, W. Kummer, Nuovo Cimento 28, 1579 (1963)CrossRefGoogle Scholar
  50. 50.
    S. Fenster, R. Koberle, Y. Nambu, Phys. Lett. 19, 513 (1965)ADSCrossRefGoogle Scholar
  51. 51.
    S.D. Drell, J.D. Sullivan, Phys. Lett. 19, 516 (1965)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. E. Dorokhov
    • 1
  • N. I. Kochelev
    • 1
    • 2
  • A. P. Martynenko
    • 3
  • F. A. Martynenko
    • 3
  • A. E. Radzhabov
    • 2
    • 4
  1. 1.Joint Institute of Nuclear Research, BLTPMoscow region, DubnaRussia
  2. 2.Institute of Modern Physics of Chinese Academy of SciencesLanzhouChina
  3. 3.Samara UniversitySamaraRussia
  4. 4.Matrosov Institute for System Dynamics and Control Theory SB RASIrkutskRussia

Personalised recommendations