Advertisement

Hadronic decays of the (pseudo-)scalar charmonium states \(\eta_{c}\) and \(\chi_{c0}\) in the extended Linear Sigma Model

  • Walaa I. Eshraim
  • Christian S. Fischer
Regular Article - Theoretical Physics

Abstract.

We study the phenomenology of the ground-state (pseudo-)scalar charmonia \(\eta_{c}\) and \(\chi_{c0}\) in the framework of a \( U(4)_r \times U(4)_l\) symmetric linear sigma model with (pseudo-)scalar and (axial-) vector mesons. Based on previous results for the spectrum of charmonia and the spectrum and (OZI-dominant) strong decays of open charmed mesons, we extend the study of this model to OZI-suppressed charmonia decays. This includes decays into “ordinary” mesons but also particularly interesting channels with scalar-isoscalar resonances \( f_{0}(1370)\), \(f_{0}(1500)\), \(f_{0}(1710)\) that may include sizeable contributions from a scalar glueball. We study the variation of the corresponding decay widths assuming different mixings between glueball and quark-antiquark states. We also compute the decay width of the pseudoscalar \(\eta_{c}\) into a pseudoscalar glueball. In general, our results for decay widths are in reasonable agreement with experimental data where available. Order of magnitude predictions for as yet unmeasured states and channels are potentially interesting for BESIII, Belle II, LHCb as well as the future PANDA experiment at the FAIR facility.

References

  1. 1.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 46, R1914 (1992) arXiv:hep-lat/9205006ADSCrossRefGoogle Scholar
  3. 3.
    H.Q. Zhou, R.G. Ping, B.S. Zou, Phys. Lett. B 611, 123 (2005) arXiv:hep-ph/0412221ADSCrossRefGoogle Scholar
  4. 4.
    F.E. Close, Q. Zhao, Phys. Rev. D 71, 094022 (2005) arXiv:hep-ph/0504043ADSCrossRefGoogle Scholar
  5. 5.
    Q. Zhao, Phys. Lett. B 659, 221 (2008) arXiv:0705.0101ADSCrossRefGoogle Scholar
  6. 6.
    J. Segovia, D.R. Entem, F. Fernandez, Nucl. Phys. A 915, 125 (2013) arXiv:1301.2592ADSCrossRefGoogle Scholar
  7. 7.
    J.-M. Frere, J. Heeck, Phys. Rev. D 92, 114035 (2015) arXiv:1506.04766ADSCrossRefGoogle Scholar
  8. 8.
    P. Ko, S. Rudaz, Phys. Rev. D 50, 6877 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    M. Urban, M. Buballa, J. Wambach, Nucl. Phys. A 697, 338 (2002) arXiv:hep-ph/0102260ADSCrossRefGoogle Scholar
  10. 10.
    D. Parganlija, F. Giacosa, D.H. Rischke, Phys. Rev. D 82, 054024 (2010) arXiv:1003.4934ADSCrossRefGoogle Scholar
  11. 11.
    S. Gallas, F. Giacosa, D.H. Rischke, Phys. Rev. D 82, 014004 (2010) arXiv:0907.5084ADSCrossRefGoogle Scholar
  12. 12.
    S. Janowski, D. Parganlija, F. Giacosa, D.H. Rischke, Phys. Rev. D 84, 054007 (2011) arXiv:1103.3238ADSCrossRefGoogle Scholar
  13. 13.
    D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa, D.H. Rischke, Phys. Rev. D 87, 014011 (2013) arXiv:1208.0585ADSCrossRefGoogle Scholar
  14. 14.
    W.I. Eshraim, PoS QCD-TNT-III, 049 (2013) arXiv:1401.3260Google Scholar
  15. 15.
    W.I. Eshraim, F. Giacosa, EPJ Web of Conferences 81, 05009 (2014) arXiv:1409.5082CrossRefGoogle Scholar
  16. 16.
    W.I. Eshraim, EPJ Web of Conferences 95, 04018 (2015) arXiv:1411.2218CrossRefGoogle Scholar
  17. 17.
    W.I. Eshraim, J. Phys.: Conf. Ser. 599, 012009 (2015) arXiv:1411.4749Google Scholar
  18. 18.
    W.I. Eshraim, F. Giacosa, D.H. Rischke, Eur. Phys. J. A 51, 112 (2015) arXiv:1405.5861ADSCrossRefGoogle Scholar
  19. 19.
    W.I. Eshraim, PhD Thesis, Frankfurt University (2015) arXiv:1509.09117Google Scholar
  20. 20.
    C. Rosenzweig, A. Salomone, J. Schechter, Phys. Rev. D 24, 2545 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Migdal, M.A. Shifman, Phys. Lett. B 114, 445 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    R. Gomm, P. Jain, R. Johnson, J. Schechter, Phys. Rev. D 33, 801 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    H. Gomm, J. Schechter, Phys. Lett. B 158, 449 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    C. Amsler, F.E. Close, Phys. Rev. D 53, 295 (1996) arXiv:hep-ph/9507326ADSCrossRefGoogle Scholar
  25. 25.
    W.-J. Lee, D. Weingarten, Phys. Rev. D 61, 014015 (2000) arXiv:hep-lat/9910008ADSCrossRefGoogle Scholar
  26. 26.
    F.E. Close, A. Kirk, Eur. Phys. J. C 21, 531 (2001) arXiv:hep-ph/0103173ADSCrossRefGoogle Scholar
  27. 27.
    C. Amsler, N.A. Tornqvist, Phys. Rep. 389, 61 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    F. Giacosa, T. Gutsche, V.E. Lyubovitskij, A. Faessler, Phys. Rev. D 72, 094006 (2005) arXiv:hep-ph/0509247ADSCrossRefGoogle Scholar
  29. 29.
    F. Giacosa, T. Gutsche, V.E. Lyubovitskij, A. Faessler, Phys. Rev. D 72, 114021 (2005) arXiv:hep-ph/0511171ADSCrossRefGoogle Scholar
  30. 30.
    H.-Y. Cheng, C.-K. Chua, K.-F. Liu, Phys. Rev. D 74, 094005 (2006) arXiv:hep-ph/0607206ADSCrossRefGoogle Scholar
  31. 31.
    E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007) arXiv:0708.4016ADSCrossRefGoogle Scholar
  32. 32.
    P. Chatzis, A. Faessler, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 84, 034027 (2011) arXiv:1105.1676ADSCrossRefGoogle Scholar
  33. 33.
    S. Janowski, F. Giacosa, D.H. Rischke, Phys. Rev. D 90, 114005 (2014) arXiv:1408.4921ADSCrossRefGoogle Scholar
  34. 34.
    W.I. Eshraim, S. Janowski, F. Giacosa, D.H. Rischke, Phys. Rev. D 87, 054036 (2013) arXiv:1208.6474ADSCrossRefGoogle Scholar
  35. 35.
    W.I. Eshraim, S. Janowski, A. Peters, K. Neuschwander, F. Giacosa, Acta Phys. Pol. Suppl. 5, 1101 (2012) arXiv:1209.3976CrossRefGoogle Scholar
  36. 36.
    W.I. Eshraim, S. Janowski, J. Phys.: Conf. Ser. 426, 012018 (2013) arXiv:1211.7323Google Scholar
  37. 37.
    W.I. Eshraim, S. Janowski PoS ConfinementX 118 (2012) arXiv:1301.3345Google Scholar
  38. 38.
    W.I. Eshraim, S. Schramm, Phys. Rev. D 95, 014028 (2017) arXiv:1606.02207ADSCrossRefGoogle Scholar
  39. 39.
    L.S. Geng, F.K. Guo, C. Hanhart, R. Molina, E. Oset, B.S. Zou, Eur. Phys. J. A 44, 305 (2010) arXiv:0910.5192ADSCrossRefGoogle Scholar
  40. 40.
    L.-R. Dai, J.-J. Xie, E. Oset, Phys. Rev. D 91, 094013 (2015) arXiv:1503.02463ADSCrossRefGoogle Scholar
  41. 41.
    F. Giacosa, Phys. Rev. D 80, 074028 (2009) arXiv:0903.4481ADSCrossRefGoogle Scholar
  42. 42.
    F. Giacosa, AIP Conf. Proc. 1322, 223 (2010) arXiv:1010.1021ADSCrossRefGoogle Scholar
  43. 43.
    UKQCD Collaboration (G.S. Bali, K. Schilling, A. Hulsebos, A.C. Irving, C. Michael, P.W. Stephenson), Phys. Lett. B 309, 378 (1993) arXiv:hep-lat/9304012ADSCrossRefGoogle Scholar
  44. 44.
    C.J. Morningstar, M.J. Peardon, Phys. Rev. D 60, 034509 (1999) arXiv:hep-lat/9901004ADSCrossRefGoogle Scholar
  45. 45.
    TXL, T(X)L Collaboration (G.S. Bali, B. Bolder, N. Eicker, T. Lippert, B. Orth, P. Ueberholz, K. Schilling, T. Struckmann), Phys. Rev. D 62, 054503 (2000) arXiv:hep-lat/0003012CrossRefGoogle Scholar
  46. 46.
    M. Loan, X.-Q. Luo, Z.-H. Luo, Int. J. Mod. Phys. A 21, 2905 (2006) arXiv:hep-lat/0503038ADSCrossRefGoogle Scholar
  47. 47.
    Y. Chen et al., Phys. Rev. D 73, 014516 (2006) arXiv:hep-lat/0510074ADSCrossRefGoogle Scholar
  48. 48.
    E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards, E. Rinaldi, JHEP 10, 170 (2012) arXiv:1208.1858ADSCrossRefGoogle Scholar
  49. 49.
    T. Gutsche, V.E. Lyubovitskij, M.C. Tichy, Phys. Rev. D 80, 014014 (2009) arXiv:0904.3414ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikJustus-Liebig-Universität GiessenGiessenGermany
  2. 2.Helmholtz Institute MainzMainzGermany

Personalised recommendations