Advertisement

Shape of proton and the pion cloud

  • László Jenkovszky
  • István Szanyi
  • Chung-I Tan
Regular Article - Theoretical Physics

Abstract.

Proton-proton differential and total cross sections provide information on the energy dependence of proton shape and size. We show that the deviation from exponential behavior of the diffraction cone observed near t = -0.1 GeV2 the so-called break) both at the ISR and the LHC follows from the t-channel two-pion loop contributions, imposed by unitarity. By using a simple Regge pole model, we extrapolate the “break” from the ISR energy region to that of the LHC. This allows us to answer two important questions: 1) To what extent is the “break” observed recently at the LHC a “recurrence” of that seen at the ISR (universality)? 2) What is the relative weight of two-pion effect to the vertex coupling (Regge residue) compared to expanding size (pomeron propagator) in producing the “break”? We find that the effect comes both from the Regge residue (proton-pomeron coupling) and from the Regge propagator. A detailed analysis of their balance, including the correlation between the relevant parameters is presented.

References

  1. 1.
    TOTEM Collaboration (G. Antchev et al.), Nucl. Phys. B 899, 527 (2015) arXiv:1503.08111CrossRefMathSciNetGoogle Scholar
  2. 2.
    TOTEM Collaboration (G. Antchev), First determination of the $\rho$-parameter at $\sqrt{s} = 13$ Tev - probing the existence of a colourless three-gluon bound state, CERN-EP-2017-335Google Scholar
  3. 3.
    G. Cohen-Tannoudji, V.V. Ilyin, Laszlo L. Jenkovszky, Nuovo Cimento 5, 957 (1972)Google Scholar
  4. 4.
    A.A. Anselm, V.N. Gribov, Phys. Lett. B 40, 487 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    C.-I. Tan, D.M. Tow, Phys. Lett. B 53, 452 (1975)CrossRefGoogle Scholar
  6. 6.
    U. Sukhatme, Chung-I. Tan, Tran Thanh Van, Z. Phys. C, Part. Fields 1, 95 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    J.B. Bronzan, Fine structure of the pomeron, in Symposium on the Pomeron (Argonne National Laboratory, 1973). Google Scholar
  8. 8.
    A. Fagundes, G. Pancheri, A. Grau, S. Pacetti, Y.N. Srivastav, Phys. Rev. D 88, 094019 (2013) arXiv:1306.0452ADSCrossRefGoogle Scholar
  9. 9.
    D.A. Fagundes, L. Jenkovszky, E.Q. Miranda, G. Pancheri, P.V.R.G. Silva, Int. J. Mod. Phys. A 31, 1645022 (2016) arXiv:1509.02197ADSCrossRefGoogle Scholar
  10. 10.
    L. Jenkovszky, I. Szanyi, Phys. Part. Nucl. Lett. 14, 687 (2017) arXiv:1701.01269CrossRefGoogle Scholar
  11. 11.
    G. Barbiellini et al., Phys. Lett. B 39, 663 (1972)ADSCrossRefGoogle Scholar
  12. 12.
    L. Jenkovszky, A. Lengyel, Acta Phys. Pol. B 46, 863 (2015) arXiv:1410.4106ADSCrossRefGoogle Scholar
  13. 13.
    A.O. Barut, D.E. Zwanziger, Phys. Rev. 127, 974 (1962)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    T. Biro, Zs. Schram, L. Jenkovszky, Entropy production during hadronization of a quark-gluon plasma (2017) arXiv:1707.07912Google Scholar
  15. 15.
    R. Fiore, L. Jenkovszky, R. Schicker, Exclusive diffractive resonance production in proton-proton collisions at high energies (2017) arXiv:1711.08353Google Scholar
  16. 16.
    S. Donnachie, G. Dosch, P. Landshoff, O. Nachtmann, Pomeron Physics and QCD (Cambridge University Press, 2002)Google Scholar
  17. 17.
  18. 18.
    TOTEM Collaboration (G. Antchev et al.), EPL 101, 21004 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    TOTEM Collaboration (G. Antchev et al.), Phys. Rev. Lett. 111, 012001 (2013)CrossRefGoogle Scholar
  20. 20.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    TOTEM Collaboration (G. Antchev), First measurement of elastic, inelastic and total cross-section at $\sqrt{s} = 13$ TeV by TOTEM and overview of cross section data at LHC energies, CERN-EP-2017-321Google Scholar
  22. 22.
    TOTEM Collaboration (G. Antchev et al.), Eur. Phys. J. C 76, 661 (2016) arXiv:1610.00603CrossRefGoogle Scholar
  23. 23.
    N. Bence, L. Jenkovszky, I. Szanyi, Approaching the asymptotics at the LHC, arXiv:1711.06380Google Scholar
  24. 24.
    ATLAS Collaboration (G. Aad et al.), Nucl. Phys. B 889, 486 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    ATLAS Collaboration (M. Aaboud et al.), Phys. Lett. B 761, 158 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    V.A. Schegelski, M.G. Ryskin, Phys. Rev. D 85, 094024 (2012) arXiv:1112.3243ADSCrossRefGoogle Scholar
  27. 27.
    L.L. Jenkovszky, A.I. Lengyel, D.I. Lontkovsky, Int. J. Mod. Phys. A 26, 4755 (2011) arXiv:1105.1202ADSCrossRefGoogle Scholar
  28. 28.
    G.F. Chew, M.L. Goldberger, F. Low, Y. Nambu, Phys. Rev. 106, 1337 (1957)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    G.F. Chew, F. Low, M.L. Goldberger, Phys. Rev. Lett. 22, 208 (1969)ADSCrossRefGoogle Scholar
  30. 30.
    D. Amati, A. Stanghellini, S. Fubini, Nuovo Cimento 26, 6 (1962)Google Scholar
  31. 31.
    D. Amati, S. Fubini, A. Stanghellini, Phys. Lett. 1, 29 (1962)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    L. Van Hove, Rev. Mod. Phys. 36, 655 (1964)ADSCrossRefGoogle Scholar
  33. 33.
    A. Tricomi, QCD processes in cosmic rays with air showers, in WE-Heraeus Physics School on QCD (Bad-Honnef, Germany, 2017) https://indico.cern.ch/event/614845/
  34. 34.
    L. Jenkovszky, I. Szanyi, Mod. Phys. Lett. A 32, 1750116 (2017) arXiv:1705.04880ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • László Jenkovszky
    • 1
  • István Szanyi
    • 2
  • Chung-I Tan
    • 3
  1. 1.Bogolyubov Institute for Theoretical Physics (BITP)Ukrainian National Academy of SciencesKievUkraine
  2. 2.Uzhgorod National UniversityUzhgorodUkraine
  3. 3.Department of PhysicsBrown UniversityProvidenceUSA

Personalised recommendations