Advertisement

4He, 10Be, and 34Mg accompanied ternary fission of the 242Pu isotope in the touching equatorial configuration

  • M. R. Pahlavani
  • M. Zadehrafi
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract.

4He, 10Be, and 34Mg accompanied ternary fission of the 242Pu isotope is investigated using the three-cluster model in the equatorial geometry. Driving potentials and fission yields are calculated for each fragmentation channel. The obtained results reveal that in the ternary fission of the 242Pu isotope, the probability of crossing over the potential barrier is drastically decreased by increasing the mass of the fixed fragment due to the height of the potential barrier. In other words, the potential barrier for 34Mg accompanied ternary fission of 242Pu in equatorial configuration is much higher than that for the 4He accompanied ternary fission of 242Pu isotope. The aim of selecting two light fragments and one heavy fixed third fragment is to compare the performance of the equatorial configuration for light and heavy third fixed fragments. The results also indicate that the ternary fission of 242Pu accompanied by 34Mg as a heavy third fragment occurs with very low probability in the equatorial configuration. Therefore, the collinear configuration is completely preferred in this case. The comparison between relative yields for a variety of fragmentation channel in each group shows that the presence of double or near double magic closed-shell fragments is much favored in the cold ternary fission of 242Pu .

References

  1. 1.
    M.R. Pahlavani, S.M. Mirfathi, Phys. Rev. C 96, 014606 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    M.R. Pahlavani, S.M. Mirfathi, Phys. Rev. C 93, 044617 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    M.R. Pahlavani, S.M. Mirfathi, Eur. Phys. J. A 52, 95 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    M.R. Pahlavani, S.M. Mirfathi, Phys. Rev. C 92, 024622 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    A. Deppman, E. Andrade-II, V. Guimarães et al., Phys. Rev. C 88, 024608 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Ayyad, J. Benlliure et al., Phys. Rev. C 89, 054610 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    K.B. Gikal, E.M. Kozulin, A.A. Bogachev et al., Phys. At. Nucl. 79, 1367 (2016)CrossRefGoogle Scholar
  8. 8.
    D. Naderi, M.R. Pahlavani, S.A. Alavi, Phys. Rev. C 87, 054618 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M.R. Pahlavani, D. Naderi, Eur. Phys. J. A 48, 129 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M.R. Pahlavani, D. Naderi, S.M. Mirfathi, Mod. Phys. Lett. A 26, 1323 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M.R. Pahlavani, D. Naderi, Phys. Rev. C 83, 024602 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M.R. Pahlavani, P. Mehdipour, Int. J. Mod. Phys. E 27, 1850018 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    A. Deppman, E. Andrade-II, V. Guimarães et al., Phys. Rev. C 87, 054604 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Daniel H. Morse, Arlyn J. Antolak, Barney L. Doyle, Nucl. Instrum. Methods Phys. Res. B 261, 378 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    T. San-Tsiang, R. Chastel, H. Zah-Wei, L. Vigneron, C. R. Acad. Sci. 223, 986 (1946)Google Scholar
  16. 16.
    T. San-Tsiang, H. Zah-Wei, R. Chastel, L. Vigneron, Phys. Rev. 71, 382 (1947)ADSCrossRefGoogle Scholar
  17. 17.
    T. San-Tsiang, H. Zah-Wei, R. Chastel, L. Vigneron, Phys. Rev. 71, 382 (1947)ADSCrossRefGoogle Scholar
  18. 18.
    T. San-Tsiang, H. Zah-Wei, R. Chastel, L. Vigneron, J. Phys. Radium 8, 165 (1947)CrossRefGoogle Scholar
  19. 19.
    T. San-Tsiang, H. Zah-Wei, L. Vigneron, R. Chastel, Nature (London) 159, 773 (1947)ADSCrossRefGoogle Scholar
  20. 20.
    G. Farwell, E. Segrè, C. Wiegand, Phys. Rev. 71, 327 (1947) Their preliminary classified report was dated May 18, 1944ADSCrossRefGoogle Scholar
  21. 21.
    A.V. Ramayya, J.K. Hwang, J.H. Hamilton, A. Sandulescu, A. Florescu, G.M. Ter-Akopian, A.V. Daniel, Yu.Ts. Oganessian, G.S. Popeko, W. Greiner, J.D. Cole, Phys. Rev. Lett. 81, 947 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    O. Serot, Proceedings of the International Conference on Nuclear Data for Science and Technology 2007, DOI: 10.1051/ndata:07748Google Scholar
  23. 23.
    W. von Oertzen, A.K. Nasirov, Phys. Lett. B 734, 234 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    E.L. Albenesius, Phys. Rev. Lett. 3, 274 (1959)ADSCrossRefGoogle Scholar
  25. 25.
    E.L. Albenesius, R.S. Ondrejcin, Nucleonics 18, 100 (1960)Google Scholar
  26. 26.
    H. Diehl, W. Greiner, Nucl. Phys. A 229, 29 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    A.R. Degheidy, J.A. Maruhn, Z. Phys. A 290, 205 (1979)ADSCrossRefGoogle Scholar
  28. 28.
    L.L. Green, D.L. Livesey, Nature 159, 332 (1947)ADSCrossRefGoogle Scholar
  29. 29.
    T.P. Doan, C. Carles, R. Chastel, Nucl. Phys. A 96, 588 (1967)ADSCrossRefGoogle Scholar
  30. 30.
    P. Fong, Phys. Rev. C 2, 735 (1970)ADSCrossRefGoogle Scholar
  31. 31.
    P.B. Vitta, Nucl. Phys. A 170, 417 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    C. Wagemans, A.J. Deruytter, Nucl. Phys. A 194, 657 (1972)ADSCrossRefGoogle Scholar
  33. 33.
    J.P. Theobald, P. Heeg, M. Mutterer, Nucl. Phys. A 502, 343 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    G. Royer, F. Haddad, J. Mignen, J. Phys. G: Nucl. Part. Phys. 18, 2015 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    D.N. Poenaru, W. Greiner, J.H. Hamilton, A.V. Ramayya, E. Hourany, R.A. Gherghescu, Phys. Rev. C 59, 3457 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    D.N. Poenaru, M. Ivascu, M.S. Ivasu, in Particle Emission from Nuclei, Vol. 3 (CRC Press, Boca Raton, Florida, 1989) chapt. 3, pp. 63--97Google Scholar
  37. 37.
    D.N. Poenaru, in Nuclear Decay Modes, Vol. 27 (Institute of Physics Publishing, Bristol, UK, 1996) Issue 17, chapt. 12Google Scholar
  38. 38.
    D.N. Poenaru, B. Dobrescu, W. Greiner, J.H. Hamilton, A.V. Ramayya, J. Phys. G: Nucl. Part. Phys. 26, L97 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    D.N. Poenaru, R.A. Gherghescu, W. Greiner, Nucl. Phys. A 747, 182 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    A. Florescu, A. Sándulescu, D.S. Delion, J.H. Hamilton, A.V. Ramayya, W. Greiner, Phys. Rev. C 61, 051602(R) (2000)ADSCrossRefGoogle Scholar
  41. 41.
    F. Carstoiu, I. Bulboaca, A. Sándulescu, W. Greiner, Phys. Rev. C 61, 044606 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    S. Misicu, P.O. Hess, W. Greiner, Phys. Rev. C 63, 054308 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    D.S. Delion, A. Florescu, A. Sándulescu, Phys. Rev. C 63, 044312 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    A. Sándulescu, F. Carstoiu, I. Bulboaca, W. Greiner, Phys. Rev. C 60, 044613 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    L. Rosen, A.M. Hudson, Phys. Rev. 78, 533 (1950)ADSCrossRefGoogle Scholar
  46. 46.
    L.L. Green, D.L. Livesey, Nature 159, 332 (1947)ADSCrossRefGoogle Scholar
  47. 47.
    L.L. Green, D.L. Livesey, Philos. Trans. A 241, 323 (1948)ADSCrossRefGoogle Scholar
  48. 48.
    K. Manimaran, M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    K. Manimaran, M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    V. Mirzaei, H. Miri-Hakimabad, Roman. Rep. Phys. 64, 50 (2012)Google Scholar
  51. 51.
    Yu.N. Kopatch, M. Mutterer, D. Schwalm, P. Thirolf, F. Gonnenwein, Phys. Rev. C 65, 044614 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    J.H. Hamilton et al., Phys. At. Nucl. 65, 645 (2002)CrossRefGoogle Scholar
  53. 53.
    M.R. Pahlavani, O.N. Ghodsi, M. Zadehrafi, Phys. Rev. C 96, 054612 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    K.P. Santhosh, Sreejith Krishnan, B. Priyanka, Int. J. Mod. Phys. E 23, 1450071 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977)ADSCrossRefGoogle Scholar
  56. 56.
    K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen, Phys. Rev. C 90, 024601 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    W.D. Myers, W.J. Swiatecki, Ark. Fys. 36, 343 (1967)Google Scholar
  58. 58.
    J. Blocki, W.J. Swiatecki, Ann. Phys. (N.Y.) 132, 53 (1983)ADSCrossRefGoogle Scholar
  59. 59.
    K. Manimaran, M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    M. Balasubramaniam, K.R. Vijayaraghavan, K. Manimaran, Phys. Rev. C 93, 014601 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995)ADSCrossRefGoogle Scholar
  62. 62.
    A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    G. Audi et al., Chin. Phys. C 36, 1603 (2012)CrossRefGoogle Scholar
  64. 64.
    D.N. Poenaru, W. Greiner, R.A. Gherghescu, At. Data Nucl. Data Tables 68, 91 (1998)ADSCrossRefGoogle Scholar
  65. 65.
    G. Audi, F.G. Kondev, Meng Wang, W.J. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)ADSCrossRefGoogle Scholar
  66. 66.
    W.J. Huang, G. Audi, Meng Wang, F.G. Kondev, S. Naimi, Xing Xu, Chin. Phys. C 41, 030002 (2017)ADSCrossRefGoogle Scholar
  67. 67.
    Meng Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, Xing Xu, Chin. Phys. C 41, 030003 (2017)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Basic ScienceUniversity of MazandaranBabolsarIran

Personalised recommendations