Advertisement

Physics and technology of time projection chambers as active targets

  • Y. Ayyad
  • D. Bazin
  • S. Beceiro-Novo
  • M. Cortesi
  • W. Mittig
Review
  • 47 Downloads

Abstract.

Many nuclear structure studies are presently performed with secondary radioactive beams to explore the nuclear chart far from stability. This entails a large decrease of available intensities, as compared to stable beam experiments, even with the highest power primary beam accelerators. To compensate for this intensity loss, thick targets and high detection efficiency are needed. Using secondary beams implies a change from direct kinematics to inverse kinematics: the target becomes the light reaction partner and the beam the heavy reaction partner. In quasi-elastic processes, the light reaction partner carrying most of the information emerges with very low recoil energy. In these conditions Time Projections Chambers (TPCs) filled with a gas that serves as both target and tracking medium (Active Target) have very unique properties that mitigate these difficulties. By construction, a TPC has a solid angle coverage of \( 4\pi\), and even short tracks of low energy particles can be precisely measured if the readout has a high enough granularity. Due to the reaction characteristics large dynamics of the electronics and gas multipliers are needed, and specific data analysis methods of the 3-dimensional tracks have to be developed.

References

  1. 1.
    S. Beceiro-Novo, T. Ahn, D. Bazin, W. Mittig, Prog. Part. Nucl. Phys. 84, 124 (2015)ADSGoogle Scholar
  2. 2.
    D. González-Díaz, F. Monrabal, S. Murphy, Nucl. Instrum. Methods Phys. Res. A 878, 200 (2018)ADSGoogle Scholar
  3. 3.
    G. Aad et al., J. Instrum. 3, S08003 (2008)CrossRefGoogle Scholar
  4. 4.
    F. Hartmann, A. Sharma, Nucl. Instrum. Methods Phys. Res. A 666, 1 (2012)ADSGoogle Scholar
  5. 5.
    F. Sauli, Phys. Rep. 403, 471 (2004)ADSGoogle Scholar
  6. 6.
    S. Neumaier, G. Alkhazov, M. Andronenko, A. Dobrovolsky, P. Egelhof, G. Gavrilov, H. Geissel, H. Irnich, A. Khanzadeev, G. Korolev, A. Lobodenko, G. Münzenberg, M. Mutterer, W. Schwab, D. Seliverstov, T. Suzuki, N. Timofeev, A. Vorobyov, V. Yatsoura, Nucl. Phys. A 712, 247 (2002)ADSGoogle Scholar
  7. 7.
    C. Demonchy, W. Mittig, H. Savajols, P. Roussel-Chomaz, M. Chartier, B. Jurado, L. Giot, D. Cortina-Gil, M. Caamaño, G. Ter-Arkopian, A. Fomichev, A. Rodin, M. Golovkov, S. Stepantsov, A. Gillibert, E. Pollacco, A. Obertelli, H. Wang, Nucl. Instrum. Methods Phys. Res. A 573, 145 (2007)ADSGoogle Scholar
  8. 8.
    ACTAR: An active target detector for the study of extremely exotic nuclei, GANIL proposal (2009)Google Scholar
  9. 9.
    Y. Mizoi, T. Fukuda, Y. Matsuyama, T. Miyachi, J. Nakano, N. Fukuda, M. Hirai, H. Kobinata, Y. Watanabe, H. Sakurai, Y. Watanabe, A. Yoshida, Nucl. Instrum. Methods Phys. Res. A 431, 112 (1999)ADSGoogle Scholar
  10. 10.
    T. Hashimoto, H. Ishiyama, T. Ishikawa, T. Kawamura, K. Nakai, Y. Watanabe, H. Miyatake, M. Tanaka, Y. Fuchi, N. Yoshikawa, S. Jeong, I. Katayama, T. Nomura, T. Furukawa, S. Mitsuoka, K. Nishio, M. Matsuda, H. Ikezoe, T. Fukuda, S. Das, P. Saha, Y. Mizoi, T. Komatsubara, M. Yamaguchi, Y. Tagishi, Nucl. Instrum. Methods Phys. Res. A 556, 339 (2006)ADSGoogle Scholar
  11. 11.
    S. Ota, H. Tokieda, C. Lee, M. Donzono, H. Matsubara, S. Kawase, Y. Kubota, S. Michimasa, H. Yamaguchi, M. Sako, T. Gunji, Y. Kikuchi, T. Hashimoto, H. Hamagaki, T. Uesaka, S. Kubono, H. Otsu, Y. Maeda, E. Takada, Modification of Active Target for the forward angle scattering and measurement of deuteron induced reaction on ^56Fe, Annual Report, Cent. Nucl. Study, Univ. Tokyo CNS-REP-90 (2011) pp. 70--71Google Scholar
  12. 12.
    T. Furuno, T. Kawabata, S. Adachi, Y. Ayyad, T. Baba, T. Hashimoto, Y. Ishii, S. Kabuki, H. Kubo, Y. Matsuda et al., J. Phys.: Conf. Ser. 569, 012042 (2014)Google Scholar
  13. 13.
    D. Suzuki, M. Ford, D. Bazin, W. Mittig, W. Lynch, T. Ahn, S. Aune, E. Galyaev, A. Fritsch, J. Gilbert et al., Nucl. Instrum. Methods Phys. Res. A 691, 39 (2012)ADSGoogle Scholar
  14. 14.
    W. Mittig, S. Beceiro-Novo, A. Fritsch, F. Abu-Nimeh, D. Bazin, T. Ahn, W. Lynch, F. Montes, A. Shore, D. Suzuki et al., Nucl. Instrum. Methods Phys. Res. A 784, 494 (2015)ADSGoogle Scholar
  15. 15.
    A. Laird, P. Amaudruz, L. Buchmann, S. Fox, B. Fulton, D. Gigliotti, T. Kirchner, P. Mumby-Croft, R. Openshaw, M. Pavan, J. Pearson, G. Ruprecht, G. Sheffer, P. Walden, Nucl. Instrum. Methods Phys. Res. A 573, 306 (2007)ADSGoogle Scholar
  16. 16.
    L. Linhardt, L. Baby, D. Bardayan, J. Blackmon, H. Gardiner, E. Johnson, E. Koschiy, M. Macon, M. Matos, B. Rasco et al., J. Phys.: Conf. Ser. 403, 012036 (2012)Google Scholar
  17. 17.
    A. Obertelli, A. Delbart, S. Anvar, L. Audirac, G. Authelet, H. Baba, B. Bruyneel, D. Calvet, F. Château, A. Corsi et al., Eur. Phys. J. A 50, 8 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Gai, M. Ahmed, S. Stave, W. Zimmerman, A. Breskin, B. Bromberger, R. Chechik, V. Dangendorf, T. Delbar, R. France III et al., J. Instrum. 5, P12004 (2010)CrossRefGoogle Scholar
  19. 19.
    R. Raabe, private communicationGoogle Scholar
  20. 20.
    P. Egelhof, Technical report for the design, construction and commissioning of the active target for fair (actaf) for the r3b experiment, Technical report (Fair, 2016)Google Scholar
  21. 21.
    R. Kanungo, private communication (2017)Google Scholar
  22. 22.
    T. Hashimoto, S. Kubono, H. Yamaguchi, S. Hayakawa, D.M. Kahl, S. Ota, S. Michimasa, H. Tokieda, H. Ishiyama, Y.X. Watanabe, Y. Hirayama, N. Imai, H. Miyatake, S.C. Jeong, K. Yamaguchi, I. Arai, T. Komatsubara, T. Fukuda, Y. Mizoi, S.K. Das, N. Iwasa, T. Yamada, A.A. Chen, J.J. He, AIP Conf. Proc. 1484, 454 (2012)ADSGoogle Scholar
  23. 23.
    D. Kahl, T. Hashimoto, N.N. Duy, S. Kubono, H. Yamaguchi, D.N. Binh, A.A. Chen, S. Cherubini, S. Hayakawa, J.J. He, H. Ishiyama, N. Iwasa, L.H. Khiem, Y.K. Kwon, S. Michimasa, T. Nakao, S. Ota, T. Teranishi, H. Tokieda, Y. Wakabayashi, T. Yamada, L.Y. Zhang, AIP Conf. Proc. 1594, 163 (2014)ADSGoogle Scholar
  24. 24.
    K. Yamaguchi, H. Ishiyama, M. Tanaka, Y. Watanabe, H. Miyatake, Y. Hirayama, N. Imai, H. Makii, Y. Fuchi, S. Jeong, T. Nomura, Y. Mizoi, S. Das, T. Fukuda, T. Hashimoto, I. Arai, Nucl. Instrum. Methods Phys. Res. A 623, 135 (2010)ADSGoogle Scholar
  25. 25.
    H. Ishiyama, K. Yamaguchi, Y. Mizoi, Y.X. Watanabe, S.K. Das, T. Hashimoto, H. Miyatake, Y. Hirayama, N. Imai, M. Oyaizu, S.C. Jeong, T. Fukuda, S. Mitsuoka, H. Makii, T.K. Sato, J. Instrum. 7, C03036 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Zamora, in preparationGoogle Scholar
  27. 27.
    J. Bradt, D. Bazin, F. Abu-Nimeh, T. Ahn, Y. Ayyad, S.B. Novo, L. Carpenter, M. Cortesi, M. Kuchera, W. Lynch, W. Mittig, S. Rost, N. Watwood, J. Yurkon, Nucl. Instrum. Methods Phys. Res. A 875, 65 (2017)ADSGoogle Scholar
  28. 28.
    Y. Mizoi, T. Fukuda, Y. Matsuyama, T. Miyachi, H. Miyatake, N. Aoi, N. Fukuda, M. Notani, Y. Watanabe, K. Yoneda, M. Ishihara, H. Sakurai, A. Yoshida, Phys. Rev. C 62, 065801 (2000)ADSGoogle Scholar
  29. 29.
    A. Fritsch, S. Beceiro-Novo, D. Suzuki, W. Mittig, J.J. Kolata, T. Ahn, D. Bazin, F.D. Becchetti, B. Bucher, Z. Chajecki, X. Fang, M. Febbraro, A.M. Howard, Y. Kanada-En’yo, W.G. Lynch, A.J. Mitchell, M. Ojaruega, A.M. Rogers, A. Shore, T. Suhara, X.D. Tang, R. Torres-Isea, H. Wang, Phys. Rev. C 93, 014321 (2016)ADSGoogle Scholar
  30. 30.
    J. Bradt, Y. Ayyad, D. Bazin, W. Mittig, T. Ahn, S.B. Novo, B. Brown, L. Carpenter, M. Cortesi, M. Kuchera, W. Lynch, S. Rost, N. Watwood, J. Yurkon, J. Barney, U. Datta, J. Estee, A. Gillibert, J. Manfredi, P. Morfouace, D. Pérez-Loureiro, E. Pollacco, J. Sammut, S. Sweany, Phys. Lett. B 778, 155 (2018)ADSGoogle Scholar
  31. 31.
    A. Wuosmaa, J. Schiffer, B. Back, C. Lister, K. Rehm, Nucl. Instrum. Methods Phys. Res. A 580, 1290 (2007)ADSGoogle Scholar
  32. 32.
    R. Shane, A. McIntosh, T. Isobe, W. Lynch, H. Baba, J. Barney, Z. Chajecki, M. Chartier, J. Estee, M. Famiano, B. Hong, K. Ieki, G. Jhang, R. Lemmon, F. Lu, T. Murakami, N. Nakatsuka, M. Nishimura, R. Olsen, W. Powell, H. Sakurai, A. Taketani, S. Tangwancharoen, M. Tsang, T. Usukura, R. Wang, S. Yennello, J. Yurkon, Nucl. Instrum. Methods Phys. Res. A 784, 513 (2015)ADSGoogle Scholar
  33. 33.
    F. Sauli, Gaseous Radiation Detectors, Fundamentals and Applications, 1st edition (Cambridge University Press, 2014)Google Scholar
  34. 34.
    H. Ogren, Nucl. Instrum. Methods Phys. Res. A 367, 133 (1995)ADSGoogle Scholar
  35. 35.
    C. Demonchy, M. Caamaño, H. Wang, W. Mittig, P. Roussel-Chomaz, H. Savajols, M. Chartier, D. Cortina-Gil, A. Fomichev, G. Frémont, P. Gangnant, A. Gillibert, L. Giot, M. Golovkov, B. Jurado, J. Libin, A. Obertelli, E. Pollaco, A. Rodin, C. Spitaels, S. Stepantsov, G. Ter-Akopian, R. Wolski, Nucl. Instrum. Methods Phys. Res. A 583, 341 (2007)ADSGoogle Scholar
  36. 36.
    A.A. Vorobyov, G.A. Korolev, V.A. Schegelsky, G.Y. Solyakin, G.L. Sokolov, Y.K. Zalite, Nucl. Instrum. Methods 119, 509 (1974)ADSGoogle Scholar
  37. 37.
    P. Carnelli, S. Almaraz-Calderon, K. Rehm, M. Albers, M. Alcorta, P. Bertone, B. Digiovine, H. Esbensen, J.F. Niello, D. Henderson, C. Jiang, J. Lai, S. Marley, O. Nusair, T. Palchan-Hazan, R. Pardo, M. Paul, C. Ugalde, Nucl. Instrum. Methods Phys. Res. A 799, 197 (2015)ADSGoogle Scholar
  38. 38.
    E. Pollacco, D. Beaumel, P. Roussel-Chomaz, E. Atkin, P. Baron, J.P. Baronick, E. Becheva, Y. Blumenfeld, A. Boujrad, A. Drouart, F. Druillole, P. Edelbruck, M. Gelin, A. Gillibert, C. Houarner, V. Lapoux, L. Lavergne, G. Leberthe, L. Leterrier, V. Le Ven, F. Lugiez, L. Nalpas, L. Olivier, B. Paul, B. Raine, A. Richard, M. Rouger, F. Saillant, F. Skaza, M. Tripon, M. Vilmay, E. Wanlin, M. Wittwer, MUST2: A New Generation Array for Direct Reaction Studies (Springer, Berlin, Heidelberg, 2005) pp. 287--288Google Scholar
  39. 39.
    E. Koshchiy, J. Blackmon, G. Rogachev, I. Wiedenhöver, L. Baby, P. Barber, D. Bardayan, J. Belarge, D. Caussyn, E. Johnson, K. Kemper, A. Kuchera, L. Linhardt, K. Macon, M. Matoš, B. Rasco, D. Santiago-Gonzalez, Nucl. Instrum. Methods Phys. Res. A 870, 1 (2017)ADSGoogle Scholar
  40. 40.
  41. 41.
    T. Huang, Q. Fu, S. Lin, B. Wang, Nucl. Instrum. Methods Phys. Res. A 851, 118 (2017)ADSGoogle Scholar
  42. 42.
    A. Lapierre, S. Schwarz, T. Baumann, K. Cooper, K. Kittimanapun, A. Rodriguez, C. Sumithrarachchi, S. Williams, W. Wittmer, D. Leitner et al., Rev. Sci. Instrum. 85, 02B701 (2014)CrossRefGoogle Scholar
  43. 43.
    G.C. Ball, G. Hackman, R. Krcken, Phys. Scr. 91, 093002 (2016)ADSGoogle Scholar
  44. 44.
    A. Navin, F. de Oliveira Santos, P. Roussel-Chomaz, O. Sorlin, J. Phys. G: Nucl. Part. Phys. 38, 024004 (2011)ADSGoogle Scholar
  45. 45.
  46. 46.
    T. Giles, R. Catherall, V. Fedosseev, U. Georg, E. Kugler, J. Lettry, M. Lindroos, Nucl. Instrum. Methods Phys. Res. B 204, 497 (2003)ADSGoogle Scholar
  47. 47.
    L. Bollinger, IEEE Trans. Nucl. Sci. NS-30, 2065 (1983)ADSGoogle Scholar
  48. 48.
    A. Lapierre, G. Bollen, J.R.C. Lopez-Urrutia, M. Doleans, S. Geyer, O. Kester, K. Kittimanapun, M. Portillo, S. Schwarz, J. Instrum. 5, c07001 (2010)CrossRefGoogle Scholar
  49. 49.
    W.R. Pla, T. Dickel, U. Czok, H. Geissel, M. Petrick, K. Reinheimer, C. Scheidenberger, M.I. Yavor, Nucl. Instrum. Methods Phys. Res. B 266, 4560 (2008)ADSGoogle Scholar
  50. 50.
    C.N. Davids, D. Peterson, Nucl. Instrum. Methods Phys. Res. B 266, 4449 (2008)ADSGoogle Scholar
  51. 51.
    R. Wolf, D. Beck, K. Blaum, C. Böhm, C. Borgmann, M. Breitenfeldt, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney, S. Naimi, D. Neidherr, M. Rosenbusch, L. Schweikhard, J. Stanja, F. Wienholtz, K. Zuber, Nucl. Instrum. Methods Phys. Res. A 686, 82 (2012)ADSGoogle Scholar
  52. 52.
    W. Lynch, G. Cerizza, private communicationGoogle Scholar
  53. 53.
    H. Zhao, L. Mao, J. Yang, J. Xia, X. Yang, J. Li, M. Tang, G. Shen, X. Ma, B. Wu, G. Wang, S. Ruan, K. Wang, Z. Dong, Phys. Rev. Accel. Beams 21, 023501 (2018)ADSGoogle Scholar
  54. 54.
    D.H. Jakubassa-Amundsen, H. Rothard, Phys. Rev. A 60, 385 (1999)ADSGoogle Scholar
  55. 55.
    J. Yang, O. Paul, Sens. Actuators A: Phys. 97, 520 (2002)CrossRefGoogle Scholar
  56. 56.
    ALICE Collaboration, technical report (2015)Google Scholar
  57. 57.
    S. Sambi, R. Raabe, M. Borge, M. Caamano, S. Damoy, B. Fernández-Domínguez, F. Flavigny, H. Fynbo, J. Gibelin, G. Grinyer et al., Eur. Phys. J. A 51, 1 (2015)CrossRefGoogle Scholar
  58. 58.
    J. Pancin, S. Damoy, D.P. Loureiro, V. Chambert, F. Dorangeville, F. Druillole, G. Grinyer, A. Lermitage, A. Maroni, G. Noël, C. Porte, T. Roger, P. Rosier, L. Suen, Nucl. Instrum. Methods Phys. Res. A 735, 532 (2014)ADSGoogle Scholar
  59. 59.
    T. Dafni, E. Ferrer-Ribas, I. Giomataris, P. Gorodetzky, F. Iguaz, I. Irastorza, P. Salin, A. Tomás, Nucl. Instrum. Methods Phys. Res. A 608, 259 (2009)ADSGoogle Scholar
  60. 60.
    P.C. Rout, V.M. Datar, D.R. Chakrabarty, S. Kumar, E.T. Mirgule, A. Mitra, V. Nanal, R. Kujur, A CsI(Tl) detector array for the measurement of light charged particles in heavy-ion reactions, arXiv:1705.06004Google Scholar
  61. 61.
    Y. Blumenfeld, F. Auger, J. Sauvestre, F. Maréchal, S. Ottini, N. Alamanos, A. Barbier, D. Beaumel, B. Bonnereau, D. Charlet, J. Clavelin, P. Courtat, P. Delbourgo-Salvador, R. Douet, M. Engrand, T. Ethvignot, A. Gillibert, E. Khan, V. Lapoux, A. Lagoyannis, L. Lavergne, S. Lebon, P. Lelong, A. Lesage, V. Ven, I. Lhenry, J. Martin, A. Musumarra, S. Pita, L. Petizon, E. Pollacco, J. Pouthas, A. Richard, D. Rougier, D. Santonocito, J. Scarpaci, J. Sida, C. Soulet, J. Stutzmann, T. Suomijärvi, M. Szmigiel, P. Volkov, G. Voltolini, Nucl. Instrum. Methods Phys. Res. A 421, 471 (1999)ADSGoogle Scholar
  62. 62.
    Y. Ayyad, W. Mittig, D. Bazin, S. Beceiro-Novo, M. Cortesi, Nucl. Instrum. Methods Phys. Res. A 880, 166 (2018)ADSGoogle Scholar
  63. 63.
    B. Mauss, private communicationGoogle Scholar
  64. 64.
    F. Becchetti, M. Lee, T. O’Donnell, D. Roberts, J. Kolata, L. Lamm, G. Rogachev, V. Guimarães, P. DeYoung, S. Vincent, Nucl. Instrum. Methods Phys. Res. A 505, 377 (2003)ADSGoogle Scholar
  65. 65.
    R. Shi, X.-G. Tuo, H.-L. Li, Y.-Y. Xu, F.-R. Shi, J.-B. Yang, Y. Luo, Nucl. Sci. Techn. 29, 1 (2017)CrossRefGoogle Scholar
  66. 66.
    D.R. Nygren, Proposal to investigate the feasibility of a novel concept in particle detection, LBL internal report (February 1974)Google Scholar
  67. 67.
    J.N. Marx, D.R. Nygren, Phys. Today 31, 46 (1978)CrossRefGoogle Scholar
  68. 68.
    A.H. Walenta, J. Heintze, B. Schürlein, Nucl. Instrum. Methods 92, 373 (1971)ADSGoogle Scholar
  69. 69.
    H. Aihara, M. Alston-Garnjost, D.H. Badtke, J.A. Bakken, A. Barbaro-Galtieri, A.V. Barnes, B.A. Barnett, B. Blumenfeld, A. Bross, C.D. Buchanan, IEEE Trans. Nucl. Sci. 30, 76 (1983)ADSGoogle Scholar
  70. 70.
    W. Bertozzi, M.V. Hynes, C.P. Sargent, C. Creswell, P.C. Dunn, A. Hirsch, M. Leitch, B. Norum, F.N. Rad, T. Sasanuma, Nucl. Instrum. Methods 141, 457 (1977)ADSGoogle Scholar
  71. 71.
    W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers, 2nd edition (Springer-Verlag, 1975)Google Scholar
  72. 72.
    E. Nappi, V. Peskov, Imaging Gaseous Detectors and Their Applications, 1st edition (Wiley-VCH, 2013)Google Scholar
  73. 73.
    STAR Collaboration (C. Yang), J. Phys.: Conf. Ser. 779, 012082 (2017)Google Scholar
  74. 74.
    F. Shen, S. Wang, C. Yang, Q. Xu, J. Instrum. 12, C06008 (2017)CrossRefGoogle Scholar
  75. 75.
    F. Sauli, A. Sharma, Annu. Rev. Nucl. Part. Sci. 49, 341 (1999)ADSGoogle Scholar
  76. 76.
    F. Sauli, Nucl. Instrume. Methods 156, 147 (1978)ADSGoogle Scholar
  77. 77.
    A. Oed, Nucl. Instrum. Methods Phys. Res. A 263, 351 (1988)ADSGoogle Scholar
  78. 78.
    M. Titov, L. Ropelewski, Mod. Phys. Lett. A 28, 1340022 (2013)ADSGoogle Scholar
  79. 79.
    B. Gebauer, C. Schulz, G. Richter, F.V. Levchanovsky, A. Nikiforov, Nucl. Instrum. Methods Phys. Res. A 471, 249 (2001)ADSGoogle Scholar
  80. 80.
    B. Gebauer, S. Alimov, A. Klimov, F. Levchanovski, E. Litvinenko, A. Nikiforov, V. Prikhodko, G. Richter, V. Rogov, C. Schulz, V. Shashkin, M. Wilhelm, T. Wilpert, Nucl. Instrum. Methods Phys. Res. A 529, 358 (2004)ADSGoogle Scholar
  81. 81.
    K. Yano, H. Takahashi, C. Hagai, D. Fukuda, M. Nakazawa, Y. Yonezawa, S. Kishimoto, T. Ino, M. Furusaka, IEEE Trans. Nucl. Sci. 49, 1634 (2002)ADSGoogle Scholar
  82. 82.
    C. Budtz-Jørgensen, A. Bahnsen, C. Olesen, M.M. Madsen, P. Jonasson, H.W. Schnopper, A. Oed, Nucl. Instrum. Methods Phys. Res. A 310, 82 (1991)ADSGoogle Scholar
  83. 83.
    A. Breskin, E. Shefer, R. Chechik, A. Pansky, Nucl. Instrum. Methods Phys. Res. A 345, 205 (1994)ADSGoogle Scholar
  84. 84.
    F. Sauli, Nucl. Phys. B Proc. Suppl. 61, 236 (1998)ADSGoogle Scholar
  85. 85.
    J. Bateman, G. Derbyshire, D. Duxbury, A. Marsh, N. Rhodes, E. Schooneveld, E. Spill, R. Stephenson, IEEE Trans. Nucl. Sci. 52, 736 (2005)ADSGoogle Scholar
  86. 86.
    J. Miyamoto, N. Amos, B. Gobbi, G.F. Knoll, H. Neal, L. Oesch, P. Rubinov, Passivation of micro-strip gas chambers with an interstitial germanium coating, in 1996 IEEE Nuclear Science Symposium, Conference Record, Vol. 1 (IEEE, 1997) pp. 279--282  https://doi.org/10.1109/NSSMIC.1996.590959
  87. 87.
    Y. Giomataris, P. Rebourgeard, J.P. Robert, G. Charpak, Nucl. Instrum. Methods Phys. Res. A 376, 29 (1996)ADSGoogle Scholar
  88. 88.
    G. Fanourakis, T. Geralis, K. Kousouris, K. Zachariadou, I. Giomataris, N. Giokaris, G. Loudos, M. Lebessi, E. Stiliaris, Nucl. Instrum. Methods Phys. Res. A 527, 62 (2004)ADSGoogle Scholar
  89. 89.
    I. Giomataris, R. De Oliveira, S. Andriamonje, S. Aune, G. Charpak, P. Colas, G. Fanourakis, E. Ferrer, A. Giganon, P. Rebourgeard, P. Salin, Nucl. Instrum. Methods Phys. Res. A 560, 405 (2006)ADSGoogle Scholar
  90. 90.
    T. Alexopoulos, A. Altintas, M. Alviggi, M. Arik, S. Cetin, V. Chernyatine, E. Cheu, D. Della Volpe, M. Dris, D. Fassouliotis, E. Gazis, R. Giordano, V. Gratchev, L. Guan, P. Iengo, P. Ioannou, C. Li, K. Johns, V. Kaushik, A. Khodinov, C. Kourkoumelis, S. Maltezos, K. Mermigka, H. Muller, K. Nikolopoulos, W. Park, S. Persembe, C. Petridou, R. Petti, V. Polychronakos, M. Purohit, D. Sampsonidis, G. Sekhniaidze, M. Shao, Y. Sun, G. Tsipolitis, R. Veenhof, X. Wang, J. Wotschack, S. Wu, T. Zhao, Z. Zhao, Nucl. Instrum. Methods Phys. Res. A 617, 161 (2010)ADSGoogle Scholar
  91. 91.
    P. Colas, I. Giomataris, V. Lepeltier, Nucl. Instrum. Methods Phys. Res. A 535, 226 (2004)ADSGoogle Scholar
  92. 92.
    S. Andriamonje, D. Attie, E. Berthoumieux, M. Calviani, P. Colas, T. Dafni, G. Fanourakis, E. Ferrer-Ribas, J. Galan, T. Geralis, A. Giganon, I. Giomataris, A. Gris, C.G. Sanchez, F. Gunsing, F.J. Iguaz, I. Irastorza, R.D. Oliveira, T. Papaevangelou, J. Ruz, I. Savvidis, A. Teixera, A. Tomás, J. Instrum. 5, P02001 (2010)CrossRefGoogle Scholar
  93. 93.
    J. Derré, Y. Giomataris, H. Zaccone, A. Bay, J.P. Perroud, F. Ronga, Nucl. Instrum. Methods Phys. Res. A 459, 523 (2001)ADSGoogle Scholar
  94. 94.
    P. Bhattacharya, S. Bhattacharya, N. Majumdar, S. Mukhopadhyay, S. Sarkar, P. Colas, D. Attie, Nucl. Instrum. Methods Phys. Res. A 732, 208 (2013)ADSGoogle Scholar
  95. 95.
    F. Sauli, Nucl. Instrum. Methods Phys. Res. A 386, 531 (1997)ADSGoogle Scholar
  96. 96.
    A. Buzulutskov, A. Breskin, R. Chechik, G. Garty, F. Sauli, L. Shekhtman, Nucl. Instrum. Methods Phys. Res. A 443, 164 (2000)ADSGoogle Scholar
  97. 97.
    F. Sauli, Nucl. Instrum. Methods Phys. Res. A 805, 2 (2016)ADSGoogle Scholar
  98. 98.
    G. Guedes, A. Breskin, R. Chechik, D. Vartsky, D. Bar, A. Barbosa, P. Marinho, Nucl. Instrum. Methods Phys. Res. A 513, 473 (2003)ADSGoogle Scholar
  99. 99.
    G. Bencivenni, W. Bonivento, A. Cardini, C. Deplano, P. De Simone, G. Felici, D. Marras, F. Murtas, D. Pinci, M. Poli-Lener, D. Raspino, IEEE Trans. Nucl. Sci. 49, 3242 (2002)ADSGoogle Scholar
  100. 100.
    A. Balla, G. Bencivenni, P. Branchini, A. Budano, M. Capodiferro, S. Cerioni, P. Ciambrone, E. Czerwinski, E. De Lucia, G. De Robertis, A. Di Domenico, D. Domenici, J. Dong, G. Fanizzi, G. Felici, M. Gatta, N. Lacalamita, R. Liuzzi, F. Loddo, M. Mongelli, G. Morello, A. Palladino, A. Pelosi, L. Quintieri, A. Ranieri, E. Tskhadadze, V. Valentino, J. Instrum. 9, C01014 (2014)CrossRefGoogle Scholar
  101. 101.
    R. Chechik, A. Breskin, C. Shalem, D. Mörmann, Nucl. Instrum. Methods Phys. Res. A 535, 303 (2004)ADSGoogle Scholar
  102. 102.
    L. Periale, V. Peskov, P. Carlson, T. Francke, P. Pavlopoulos, P. Picchi, F. Pietropaolo, Nucl. Instrum. Methods Phys. Res. A 478, 377 (2002)ADSGoogle Scholar
  103. 103.
    M. Cortesi, R. Alon, R. Chechik, A. Breskin, D. Vartsky, V. Dangendorf, J. Instrum. 2, P09002 (2007)CrossRefGoogle Scholar
  104. 104.
    A. Breskin, R. Alon, M. Cortesi, R. Chechik, J. Miyamoto, V. Dangendorf, J. Maia, J. Dos Santos, Nucl. Instrum. Methods Phys. Res. A 598, 107 (2009)ADSGoogle Scholar
  105. 105.
    J.-Q. Yan, Y.-G. Xie, T. Hu, J.-G. Lu, L. Zhou, G.-P. Qu, X. Cai, S.-L. Niu, H.-T. Chen, Chin. Phys. C 39, 066001 (2015)ADSGoogle Scholar
  106. 106.
    Y. Ayyad, M. Cortesi, W. Mittig, D. Bazin, J. Instrum. 12, P06003 (2017)CrossRefGoogle Scholar
  107. 107.
    T. Fujiwara, Y. Mitsuya, H. Takahashi, T. Fushie, S. Kishimito, B. Guèrard, M. Uesaka, J. Instrum. 9, P11007 (2014)CrossRefGoogle Scholar
  108. 108.
    M. Gai, D.N. McKinsey, K. Ni, D.A.R. Rubin, T. Wongjirad, R. Alon, A. Breskin, M. Cortesi, J. Miyamoto, Toward application of a thick gas electron multiplier (THGEM) readout for a dark matter detector, arXiv:0706.1106 [astro-ph, physics:nucl-ex, physics:physics] (2007)Google Scholar
  109. 109.
    R. Alon, J. Miyamoto, M. Cortesi, A. Breskin, R. Chechik, I. Carne, J.M. Maia, J.M.F. dos Santos, M. Gai, D. McKinsey, J. Instrum. 3, P01005 (2008)Google Scholar
  110. 110.
    M. Cortesi, J. Yurkon, A. Stolz, J. Instrum. 10, P02012 (2015)CrossRefGoogle Scholar
  111. 111.
    M. Cortesi, J. Instrum. 10, P09020 (2015)CrossRefGoogle Scholar
  112. 112.
    M. Cortesi, S. Rost, W. Mittig, Y. Ayyad-Limonge, D. Bazin, J. Yurkon, A. Stolz, Rev. Sci. Instrum. 88, 013303 (2017)ADSGoogle Scholar
  113. 113.
    D. Friedrich, G. Melchart, B. Sadoulet, F. Sauli, Nucl. Instrum. Methods 158, 81 (1979)ADSGoogle Scholar
  114. 114.
    M. Ball, K. Eckstein, T. Gunji, J. Instrum. 9, C04025 (2014)CrossRefGoogle Scholar
  115. 115.
    D.A. Bryman, M. Leitch, I. Navon, T. Numao, P. Schlatter, M.S. Dixit, C.K. Hargrove, H. Mes, J.A. MacDonald, R. Skegg, Nucl. Instrum. Methods Phys. Res. A 234, 42 (1985)ADSGoogle Scholar
  116. 116.
    P. Bhattacharya, D.S. Bhattacharya, S. Mukhopadhyay, S. Bhattacharya, N. Majumdar, S. Sarkar, P. Colas, D. Attie, J. Instrum. 10, P09017 (2016)CrossRefGoogle Scholar
  117. 117.
    F. Sauli, L. Ropelewski, P. Everaerts, Nucl. Instrum. Methods Phys. Res. A 560, 269 (2006)ADSGoogle Scholar
  118. 118.
    A. Bondar, A. Buzulutskov, L. Shekhtman, A. Vasiljev, Nucl. Instrum. Methods Phys. Res. A 496, 325 (2002)ADSGoogle Scholar
  119. 119.
    J. Maia, J. Veloso, J. dos Santos, A. Breskin, R. Chechik, D. Mörmann, Nucl. Instrum. Methods Phys. Res. A 504, 364 (2003)ADSGoogle Scholar
  120. 120.
    M. Killenberg, S. Lotze, J. Mnich, A. Münnich, S. Roth, F. Sefkow, M. Tonutti, M. Weber, P. Wienemann, Nucl. Instrum. Methods Phys. Res. A 530, 251 (2004)ADSGoogle Scholar
  121. 121.
    Y.-L. Zhang, H.-R. Qi, B.-T. Hu, H.-Y. Wang, Q. Ou-Yang, Y.-B. Chen, J. Zhang, Z.-W. Wen, Chin. Phys. C 41, 056003 (2017)ADSGoogle Scholar
  122. 122.
    J.F.C.A. Veloso, J.M.F. dos Santos, C.A.N. Conde, Rev. Sci. Instrum. 71, 2371 (2000)ADSGoogle Scholar
  123. 123.
    A.V. Lyashenko, A. Breskin, R. Chechik, J.F.C.A. Veloso, J.M.F.D. Santos, F.D. Amaro, J. Instrum. 1, P10004 (2006)CrossRefGoogle Scholar
  124. 124.
    F.D. Amaro, C. Santos, J.F.C.A. Veloso, A. Breskin, R. Chechik, J.M.F.d. Santos, J. Instrum. 5, P10002 (2010)CrossRefGoogle Scholar
  125. 125.
    C. Altunbas, M. Capéans, K. Dehmelt, J. Ehlers, J. Friedrich, I. Konorov, A. Gandi, S. Kappler, B. Ketzer, R. De Oliveira, Nucl. Instrum. Methods Phys. Res. A 490, 177 (2002)ADSGoogle Scholar
  126. 126.
    J. Pancin, J. Gibelin, M. Goth, P. Gangnant, J.F. Libin, R. Raabe, T. Roger, P. Roussel-Chomaz, J. Instrum. 7, P01006 (2012)Google Scholar
  127. 127.
    J. Melai, A. Breskin, M. Cortesi, Y. Bilevych, M. Fransen, H. van der Graaf, J. Visschers, V. Blanco Carballo, C. Salm, J. Schmitz, Nucl. Instrum. Methods Phys. Res. A 628, 133 (2011)ADSGoogle Scholar
  128. 128.
    M. Titov, Nucl. Instrum. Methods Phys. Res. A 581, 25 (2007)ADSGoogle Scholar
  129. 129.
    M. Chefdeville, P. Colas, Y. Giomataris, H. van der Graaf, E.H. Heijne, S. van der Putten, C. Salm, J. Schmitz, S. Smits, J. Timmermans, Nucl. Instrum. Methods Phys. Res. A 556, 490 (2006)ADSGoogle Scholar
  130. 130.
    V. Blanco Carballo, Y. Bilevych, M. Chefdeville, M. Fransen, H. van der Graaf, C. Salm, J. Schmitz, J. Timmermans, Nucl. Instrum. Methods Phys. Res. A 608, 86 (2009)ADSGoogle Scholar
  131. 131.
    H. van der Graaf, Nucl. Instrum. Methods Phys. Res. A 580, 1023 (2007)ADSGoogle Scholar
  132. 132.
    R. Bellazzini, F. Angelini, L. Baldini, A. Brez, E. Costa, L. Latronico, N. Lumb, M.M. Massai, N. Omodei, P. Soffitta, IEEE Trans. Nucl. Sci. 49, 1216 (2002)ADSGoogle Scholar
  133. 133.
    M. Chefdeville, J. Phys.: Conf. Ser. 65, 012007 (2007)Google Scholar
  134. 134.
    A.H. Rosenfeld, W.E. Humphrey, Annu. Rev. Nucl. Sci. 13, 103 (1963)ADSGoogle Scholar
  135. 135.
    J. Alme, Y. Andres, H. Appelshuser, S. Bablok, N. Bialas, R. Bolgen, U. Bonnes, R. Bramm, P. Braun-Munzinger, R. Campagnolo, P. Christiansen, A. Dobrin, C. Engster, D. Fehlker, Y. Foka, U. Frankenfeld, J. Gaardhje, C. Garabatos, P. Glssel, C.G. Gutierrez, P. Gros, H.-A. Gustafsson, H. Helstrup, M. Hoch, M. Ivanov, R. Janik, A. Junique, A. Kalweit, R. Keidel, S. Kniege, M. Kowalski, D. Larsen, Y. Lesenechal, P. Lenoir, N. Lindegaard, C. Lippmann, M. Mager, M. Mast, A. Matyja, M. Munkejord, L. Musa, B. Nielsen, V. Nikolic, H. Oeschler, E. Olsen, A. Oskarsson, L. Osterman, M. Pikna, A. Rehman, G. Renault, R. Renfordt, S. Rossegger, D. Rhrich, K. Red, M. Richter, G. Rueshmann, A. Rybicki, H. Sann, H.-R. Schmidt, M. Siska, B. Sitr, C. Soegaard, H.-K. Soltveit, D. Soyk, J. Stachel, H. Stelzer, E. Stenlund, R. Stock, P. Strme, I. Szarka, K. Ullaland, D. Vranic, R. Veenhof, J. Westergaard, J. Wiechula, B. Windelband, Nucl. Instrum. Methods Phys. Res. A 622, 316 (2010)ADSGoogle Scholar
  136. 136.
    M. Anderson, F. Bieser, R. Bossingham, D. Cebra, E. Hjort, S. Klein, S. Kleinfelder, C. Vu, H. Wieman, Nucl. Instrum. Methods Phys. Res. A 499, 679 (2003)ADSGoogle Scholar
  137. 137.
    E. Beuville, P. Barale, W. Hearn, S.R. Klein, M.A. Lisa, T. Noggle, H.G. Ritter, C. Vu, H. Wieman, IEEE Trans. Nucl. Sci. 43, 1619 (1996)ADSGoogle Scholar
  138. 138.
    J.-C. Santiard, Nucl. Instrum. Methods Phys. Res. A 518, 498 (2004)ADSGoogle Scholar
  139. 139.
    S.A. Kleinfelder, A multi-gigahertz analog transient recorder integrated circuit arXiv:1504.06753 (1992)Google Scholar
  140. 140.
    P. Baron, D. Besin, D. Calvet, C. Coquelet, X.D.L. Broise, E. Delagnes, F. Druillole, A.L. Coguie, E. Monmarthe, E. Zonca, Architecture and implementation of the front-end electronics of the time projection chambers in the T2K experiment, in 2009 16th IEEE-NPSS Real Time Conference (IEEE, 2009) pp. 43--48  https://doi.org/10.1109/RTC.2009.5321867
  141. 141.
    M. Heffner, D. Asner, R. Baker, J. Baker, S. Barrett, C. Brune, J. Bundgaard, E. Burgett, D. Carter, M. Cunningham, J. Deaven, D. Duke, U. Greife, S. Grimes, U. Hager, N. Hertel, T. Hill, D. Isenhower, K. Jewell, J. King, J. Klay, V. Kleinrath, N. Kornilov, R. Kudo, A. Laptev, M. Leonard, W. Loveland, T. Massey, C. McGrath, R. Meharchand, L. Montoya, N. Pickle, H. Qu, V. Riot, J. Ruz, S. Sangiorgio, B. Seilhan, S. Sharma, L. Snyder, S. Stave, G. Tatishvili, R. Thornton, F. Tovesson, D. Towell, R. Towell, S. Watson, B. Wendt, L. Wood, L. Yao, Nucl. Instrum. Methods Phys. Res. A 759, 50 (2014)ADSGoogle Scholar
  142. 142.
    E. Oberla, J.-F. Genat, H. Grabas, H. Frisch, K. Nishimura, G. Varner, Nucl. Instrum. Methods Phys. Res. A 735, 452 (2014)ADSGoogle Scholar
  143. 143.
    S. Funk, D. Jankowsky, H. Katagiri, M. Kraus, A. Okumura, H. Schoorlemmer, A. Shigenaka, H. Tajima, L. Tibaldo, G. Varner, A. Zink, J. Zorn, for the CTA Consortium, AIP Conf. Proc. 1792, 080012 (2017)CrossRefGoogle Scholar
  144. 144.
  145. 145.
    E. Pollacco, G. Grinyer, F. Abu-Nimeh, T. Ahn, S. Anvar, A. Arokiaraj, Y. Ayyad, H. Baba, M. Babo, P. Baron, D. Bazin, S. Beceiro-Novo, C. Belkhiria, M. Blaizot, B. Blank, J. Bradt, G. Cardella, L. Carpenter, S. Ceruti, E.D. Filippo, E. Delagnes, S.D. Luca, H.D. Witte, F. Druillole, B. Duclos, F. Favela, A. Fritsch, J. Giovinazzo, C. Gueye, T. Isobe, P. Hellmuth, C. Huss, B. Lachacinski, A. Laffoley, G. Lebertre, L. Legeard, W. Lynch, T. Marchi, L. Martina, C. Maugeais, W. Mittig, L. Nalpas, E. Pagano, J. Pancin, O. Poleshchuk, J. Pedroza, J. Pibernat, S. Primault, R. Raabe, B. Raine, A. Rebii, M. Renaud, T. Roger, P. Roussel-Chomaz, P. Russotto, G. Saccà, F. Saillant, P. Sizun, D. Suzuki, J. Swartz, A. Tizon, N. Usher, G. Wittwer, J. Yang, Nucl. Instrum. Methods Phys. Res. A 887, 81 (2018)ADSGoogle Scholar
  146. 146.
    R. Aaij, J. Albrecht, F. Alessio, S. Amato, E. Aslanides, I. Belyaev, M. van Beuzekom, E. Bonaccorsi, R. Bonnefoy, L. Brarda, O. Callot, M. Cattaneo, H. Chanal, M. Chebbi, X.C. Vidal, M. Clemencic, J. Closier, V. Coco, J. Cogan, O. Deschamps, H. Dijkstra, C. Drancourt, R. Dzhelyadin, M. Frank, M. Gandelman, C. Gaspar, V.V. Gligorov, C. Gbel, L.A.G. Cardoso, Y. Guz, C. Haen, J. He, E. van Herwijnen, W. Hulsbergen, R. Jacobsson, B. Jost, T.M. Karbach, U. Kerzel, P. Koppenburg, G. Krocker, C. Langenbruch, I. Lax, R.L. Gac, R. Lefvre, J. Lefranois, O. Leroy, L.L. Gioi, G. Liu, F. Machefert, I.V. Machikhiliyan, M. Magne, G. Mancinelli, U. Marconi, A.M. Snchez, M.N. Minard, S. Monteil, N. Neufeld, V. Niess, S. Oggero, A.P.-C. Yzquierdo, P. Perret, M. Perrin-Terrin, B. Pietrzyk, A.P. Navarro, G. Raven, P. Robbe, H. Ruiz, M.H. Schune, R. Schwemmer, J. Serrano, I. Shapoval, T. Skwarnicki, B.S.D. Paula, P. Spradlin, S. Stahl, V.K. Subbiah, S. T’Jampens, F. Teubert, C. Thomas, M. Vesterinen, M. Williams, M. Witek, A. Zvyagin, J. Instrum. 8, P04022 (2013)CrossRefGoogle Scholar
  147. 147.
    S. Benson, K. Gizdov, Hepdrone: A toolkit for the mass application of machine learning in high energy physics arXiv:1712.09114 (2017)Google Scholar
  148. 148.
    S. Zimmermann, J.T. Anderson, D. Doering, J. Joseph, C. Lionberger, T. Stezelberger, H. Yaver, IEEE Trans. Nucl. Sci. 59, 2494 (2012)ADSGoogle Scholar
  149. 149.
    X ray Instrumentation Associates, https://doi.org/www.xia.com
  150. 150.
    R. Aliaga, V. Herrero-Bosch, S. Capra, A. Pullia, J. Dueas, L. Grassi, A. Triossi, C. Domingo-Pardo, R. Gadea, V. Gonzlez, T. Hyk, E. Sanchs, A. Gadea, D. Mengoni, Nucl. Instrum. Methods Phys. Res. A 800, 34 (2015)ADSGoogle Scholar
  151. 151.
    J.W. Bradt, Measurement of Isobaric Analogue Resonances of 47Ar with the Active-Target Time Projection Chamber, PhD Thesis, Michigan State University (2017)Google Scholar
  152. 152.
    S. Martoiu, H. Muller, A. Tarazona, J. Toledo, J. Instrum. 8, C03015 (2013)CrossRefGoogle Scholar
  153. 153.
  154. 154.
    K. Aamodt et al., J. Instrum. 3, S08002 (2008)Google Scholar
  155. 155.
    K. Abe et al., Nucl. Instrum. Methods Phys. Res. A 659, 106 (2011)ADSGoogle Scholar
  156. 156.
    J. Gomez-Cadenas, Nucl. Part. Phys. Proc. 273-275, 1732 (2016)CrossRefGoogle Scholar
  157. 157.
    E. Snider, G. Petrillo, J. Phys.: Conf. Ser. 898, 042057 (2017)Google Scholar
  158. 158.
    A. Simn, C. Lerche, F. Monrabal, J. Gmez-Cadenas, V. Lvarez, C. Azevedo, J. Benlloch-Rodrguez, F. Borges, A. Botas, S. Crcel, J. Carrin, S. Cebrin, C. Conde, J. Daz, M. Diesburg, J. Escada, R. Esteve, R. Felkai, L. Fernandes, P. Ferrario, A. Ferreira, E. Freitas, A. Goldschmidt, D. Gonzlez-Daz, R. Gutirrez, J. Hauptman, C. Henriques, A. Hernandez, J.H. Morata, V. Herrero, B. Jones, L. Labarga, A. Laing, P. Lebrun, I. Liubarsky, N. Lpez-March, M. Losada, J. Martn-Albo, G. Martnez-Lema, A. Martnez, A. McDonald, C. Monteiro, F. Mora, L. Moutinho, J.M. Vidal, M. Musti, M. Nebot-Guinot, P. Novella, D. Nygren, B. Palmeiro, A. Para, J. Prez, M. Querol, J. Renner, L. Ripoll, J. Rodrguez, L. Rogers, F. Santos, J. dos Santos, C. Sofka, M. Sorel, T. Stiegler, J. Toledo, J. Torrent, Z. Tsamalaidze, J. Veloso, R. Webb, J. White, N. Yahlali, J. Instrum. 12, P08009 (2017)CrossRefGoogle Scholar
  159. 159.
    C.T.R. Wilson, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 87, 277 (1912)ADSGoogle Scholar
  160. 160.
    G. Meijer, R. Mennega, G. Sizoo, Physica 20, 301 (1954)ADSGoogle Scholar
  161. 161.
    D.A. Glaser, Phys. Rev. 87, 665 (1952)ADSGoogle Scholar
  162. 162.
    M. Mermikides, Data analysis for bubble chambers and hybrid systems, technical report, CERN (1980)Google Scholar
  163. 163.
    P. Hough, Method and means for recognizing complex patterns, uS Patent 3,069,654 (Dec. 18 1962) https://doi.org/www.google.com/patents/US3069654
  164. 164.
    R.O. Duda, P.E. Hart, Commun. ACM 15, 11 (1972)CrossRefGoogle Scholar
  165. 165.
    P.V.C. Hough, Machine analysis of bubble chamber pictures, in Proceedings, 2nd International Conference on High-Energy Accelerators and Instrumentation, HEACC 1959, CERN, Geneva, Switzerland, September 14–19, 1959, Vol. C590914 (CERN, 1959) pp. 554–558Google Scholar
  166. 166.
    D. Ballard, Pattern Recognit. 13, 111 (1981)CrossRefGoogle Scholar
  167. 167.
    J. Adamczewski, K.-H. Becker, S. Belogurov, N. Boldyreva, A. Chernogorov, C. Deveaux, V. Dobyrn, M. Dürr, J. Eom, J. Eschke, C. Hohne, K.-H. Kampert, V. Kleipa, L. Kochenda, B. Kolb, J. Kopfer, P. Kravtsov, S. Lebedev, E. Lebedeva, E. Leonova, S. Linev, T. Mahmoud, J. Michel, N. Miftakhov, Y. Nam, W. Niebur, K. Oh, G. Ososkov, E. Ovcharenko, C. Pauly, J. Pouryamout, S. Querchfeld, J. Rautenberg, S. Reinecke, Y. Riabov, E. Roshchin, V. Samsonov, J. Song, O. Tarasenkova, T.T. de Heidenreich, M. Traxler, C. Ugur, E. Vznuzdaev, M. Vznuzdaev, J. Yi, I.-K. Yoo, Nucl. Instrum. Methods Phys. Res. A 766, 250 (2014)ADSGoogle Scholar
  168. 168.
    S. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L. Bravina, C. Ernst, L. Gerland, M. Hofmann, S. Hofmann, J. Konopka, G. Mao, L. Neise, S. Soff, C. Spieles, H. Weber, L. Winckelmann, H. Stcker, W. Greiner, C. Hartnack, J. Aichelin, N. Amelin, Prog. Part. Nucl. Phys. 41, 255 (1998)ADSGoogle Scholar
  169. 169.
    C. Cheshkov, Nucl. Instrum. Methods Phys. Res. A 566, 35 (2006)ADSGoogle Scholar
  170. 170.
    P. Yepes, Nucl. Instrum. Methods Phys. Res. A 380, 582 (1996)ADSGoogle Scholar
  171. 171.
    C. Cheshkov, Fast Hough Transform Track Reconstruction for the ALICE TPC https://doi.org/cds.cern.ch/record/960446
  172. 172.
    I. Heinze, Development of a Hough Transformation Track Finder for Time Projection Chambers, PhD Thesis, Hamburg U. (2013)  https://doi.org/10.3204/DESY-THESIS-2013-055
  173. 173.
    J. Illingworth, J. Kittler, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9, 690 (1987)CrossRefGoogle Scholar
  174. 174.
    T. Kramer, Track parameters in LCIO, LC DET 2006-004, DESY, https://doi.org/flc.desy.de/lcnotes/noteslist/index_eng.html
  175. 175.
    V. Karimäki, Nucl. Instrum. Methods Phys. Res. A 305, 187 (1991)ADSGoogle Scholar
  176. 176.
    R.E. Kalman, Trans. ASME J. Basic Eng. (Series D) 82, 35 (1960)CrossRefGoogle Scholar
  177. 177.
    C. Santamaria, private communicationGoogle Scholar
  178. 178.
    C. Santamaria, A. Obertelli, S. Ota, M. Sasano, E. Takada, L. Audirac, H. Baba, D. Calvet, F. Château, A. Corsi, A. Delbart, P. Doornenbal, A. Giganon, A. Gillibert, Y. Kondo, Y. Kubota, C. Lahonde-Hamdoun, V. Lapoux, C.S. Lee, H. Otsu, A. Peyaud, E.C. Pollacco, H. Tokieda, T. Uesaka, J. Zenihiro, JPS Conf. Proc. 6, 030130 (2015)Google Scholar
  179. 179.
    T. Furuno, T. Kawabata, M. Murata, S. Adachi, Y. Ayyad, H. Baba, T. Baba, M. Cavallaro, T. Hashimoto, Y. Ishii, R. Kobayakawa, Y. Matsuda, Y. Matsuoka, T. Morimoto, T. Nanamura, S. Beceilo-Novo, H.J. Ong, A. Sakaue, J. Tanaka, I. Tanihata, D.T. Trong, M. Tsumura, H.D. Watanabe, J. Phys.: Conf. Ser. 863, 012076 (2017)Google Scholar
  180. 180.
    T. Furuno, T. Kawabata, M. Murata, A track finding algorithm for maiko tpc using hough transform method, technical report, Research Center For Nuclear Physics (RCNP), Osaka University (2014)Google Scholar
  181. 181.
    C. Dalitz, T. Schramke, M. Jeltsch, Image Proc. On Line 7, 184 (2017)CrossRefGoogle Scholar
  182. 182.
    K.S. Roberts, A new representation for a line, in Proceedings CVPR ’88, Computer Society Conference on, Computer Vision and Pattern Recognition, 1988 (IEEE, 1988) pp. 635--640Google Scholar
  183. 183.
    M. Jeltsch, C. Dalitz, R. Pohle-Fröhlich, Hough parameter space regularisation for line detection in 3d, in Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016), INSTICC (SciTePress, 2016) pp. 345--352Google Scholar
  184. 184.
    M.A. Fischler, R.C. Bolles, Commun. ACM 24, 381 (1981)CrossRefGoogle Scholar
  185. 185.
    M. Abdullah, M. Sabra, M. Rashid, Z. Shehadeh, M. Billah, S. Das, M. Uddin, A. Basak, I. Reichstein, H.S. Gupta, F. Malik, Nucl. Phys. A 775, 1 (2006)ADSGoogle Scholar
  186. 186.
    A. Strandlie, J. Wroldsen, R. Frühwirth, B. Lillekjendlie, Comput. Phys. Commun. 131, 95 (2000)ADSGoogle Scholar
  187. 187.
    J. Rauch, J. Phys.: Conf. Ser. 396, 022042 (2012)Google Scholar
  188. 188.
    S. Marcello, The PANDA Physics Programme (Springer Netherlands, Dordrecht, 2012) pp. 93--98Google Scholar
  189. 189.
    Y. Ayyad, W. Mittig, D. Bazin, M. Cortesi, J. Phys.: Conf. Ser. 876, 012003 (2017)Google Scholar
  190. 190.
    B. Humpert, Comput. Phys. Commun. 56, 299 (1990)MathSciNetADSGoogle Scholar
  191. 191.
    Therhaag, Jan, EPJ Web of Conferences 55, 02003 (2013)CrossRefGoogle Scholar
  192. 192.
    P. Baldi, K. Bauer, C. Eng, P. Sadowski, D. Whiteson, Phys. Rev. D 93, 094034 (2016)ADSGoogle Scholar
  193. 193.
    H. Kolanoski, Nucl. Instrum. Methods Phys. Res. A 367, 14 (1995)ADSGoogle Scholar
  194. 194.
    R. Acciarri et al., J. Instrum. 12, P03011 (2017)CrossRefGoogle Scholar
  195. 195.
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. Pia, F. Ranjard, A. Rybin, S. Sadilov, E.D. Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E.S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. Wellisch, T. Wenaus, D. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)ADSGoogle Scholar
  196. 196.
    A. Krizhevsky, I. Sutskever, G.E. Hinton, Commun. ACM 60, 84 (2017)CrossRefGoogle Scholar
  197. 197.
    C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, arXiv:1409.4842Google Scholar
  198. 198.
    T. Ahn, D. Bardayan, D. Bazin, S. Beceiro Novo, F. Becchetti, J. Bradt, M. Brodeur, L. Carpenter, Z. Chajecki, M. Cortesi, A. Fritsch, M. Hall, O. Hall, L. Jensen, J. Kolata, W. Lynch, W. Mittig, P. O’Malley, D. Suzuki, Nucl. Instrum. Methods Phys. Res. B 376, 321 (2016)ADSGoogle Scholar
  199. 199.
    T. Roger, M. Caamaño, C. Demonchy, W. Mittig, H. Savajols, I. Tanihata, Nucl. Instrum. Methods Phys. Res. A 638, 134 (2011)ADSGoogle Scholar
  200. 200.
    J.F. Ziegler et al., Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)ADSGoogle Scholar
  201. 201.
    M. Regler, R. Frühwirth, W. Mitaroff, Int. J. Mod. Phys. C 07, 521 (1996)ADSGoogle Scholar
  202. 202.
    R. Frühwirth, Nucl. Instrum. Methods Phys. Res. A 262, 444 (1987)ADSGoogle Scholar
  203. 203.
    D. Stampfer, M. Regler, R. Frühwirth, Comput. Phys. Commun. 79, 157 (1994)ADSGoogle Scholar
  204. 204.
    A. Ankowski, M. Antonello, P. Aprili, F. Arneodo, A. Badertscher, B. Baiboussinov, M. Baldo Ceolin, G. Battistoni, P. Benetti, A. Borio di Tigliole, R. Brunetti, A. Bueno, E. Calligarich, F. Carbonara, M. Carmona, F. Cavanna, P. Cennini, S. Centro, A. Cesana, D. Cline, K. Cieślik, A. Cocco, C. De Vecchi, A. Dabrowska, A. Di Cicco, R. Dolfini, A. Ereditato, A. Ferrari, G. Fiorillo, D. García-Gamez, Y. Ge, D. Gibin, A. Gigli Berzolari, I. Gil-Botella, K. Graczyk, L. Grandi, A. Guglielmi, J. Holeczek, D. Kiełczewska, J. Kisiel, T. Kozłowski, M. Laffranchi, J. Lagoda, B. Lisowski, J. Lozano, M. Markiewicz, A. Martínez de la Ossa, C. Matthey, F. Mauri, A. Melgarejo, A. Menegolli, G. Meng, M. Messina, P. Mijakowski, C. Montanari, S. Muraro, S. Navas, J. Nowak, S. Otwinowski, O. Palamara, L. Periale, G. Piano Mortari, A. Piazzoli, P. Picchi, F. Pietropaolo, W. Półchłopek, M. Posiadała, M. Prata, M. Prata, P. Przewlocki, A. Rappoldi, G. Raselli, E. Rondio, M. Rossella, B. Rossi, A. Rubbia, C. Rubbia, P. Sala, D. Scannicchio, E. Segreto, Y. Seo, F. Sergiampietri, J. Sobczyk, D. Stefan, J. Stepaniak, R. Sulej, M. Szeptycka, M. Szarska, M. Terrani, F. Varanini, S. Ventura, C. Vignoli, T. Wachała, H. Wang, X. Yang, A. Zalewska, Eur. Phys. J. C 48, 667 (2006)ADSGoogle Scholar
  205. 205.
    C. Höppner, S. Neubert, B. Ketzer, S. Paul, Nucl. Instrum. Methods Phys. Res. A 620, 518 (2010)ADSGoogle Scholar
  206. 206.
    G. Cerati, P. Elmer, S. Krutelyov, S. Lantz, M. Lefebvre, K. McDermott, D. Riley, M. Tadel, P. Wittich, F. Wurthwein, A. Yagil, J. Phys.: Conf. Ser. 898, 042051 (2017)Google Scholar
  207. 207.
  208. 208.
    D. Torresi, D. Carbone, M. Cavallaro, A.D. Pietro, J.F. Garcia, P. Figuera, M. Fisichella, M. Lattuada, M. Zadro, Nucl. Instrum. Methods Phys. Res. B 389-390, 1 (2016)ADSGoogle Scholar
  209. 209.
    T. Alt, H. Appelshauser, S. Bablok, B. Becker, S. Chattopadhyay, C. Cheshkov, C. Cicalo, J. Cleymans, R.W. Fearick, H. Helstrup, V. Lindenstruth, C. Loizides, M. Richter, D. Rohrich, B. Skaali, F. Staley, T. Steinbeck, A. Szostak, H. Tilsner, K. Ullaland, G. de Vaux, A. Vestbo, T. Vik, Z.Z. Vilakazi, A. Wiebalck, G. vrebekk, IEEE Trans. Nucl. Sci. 53, 854 (2006)ADSGoogle Scholar
  210. 210.
    M. Ball, Technical Design Study for the PANDA Time Projection Chamber, arXiv:1207.0013Google Scholar
  211. 211.
    J. Nickolls, I. Buck, M. Garland, K. Skadron, Queue 6, 40 (2008)CrossRefGoogle Scholar
  212. 212.
  213. 213.
    I. Peter, The universe in the laboratory - research brochure, FAIR internal report (June 2017)Google Scholar
  214. 214.
    J. Yang, J. Xia, G. Xiao, H. Xu, H. Zhao, X. Zhou, X. Ma, Y. He, L. Ma, D. Gao, J. Meng, Z. Xu, R. Mao, W. Zhang, Y. Wang, L. Sun, Y. Yuan, P. Yuan, W. Zhan, J. Shi, W. Chai, D. Yin, P. Li, J. Li, L. Mao, J. Zhang, L. Sheng, Nucl. Instrum. Methods Phys. Res. B 317, 263 (2013)ADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Y. Ayyad
    • 1
  • D. Bazin
    • 1
    • 2
  • S. Beceiro-Novo
    • 1
    • 2
  • M. Cortesi
    • 1
  • W. Mittig
    • 1
    • 2
  1. 1.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA

Personalised recommendations