Advertisement

Elastic Compton scattering from 3He and the role of the Delta

  • Arman Margaryan
  • Bruno Strandberg
  • Harald W. Grießhammer
  • Judith A. McGovern
  • Daniel R. Phillips
  • Deepshikha Shukla
Regular Article - Theoretical Physics
  • 31 Downloads

Abstract.

We report observables for elastic Compton scattering from 3He in Chiral Effective Field Theory with an explicit \( \Delta(1232)\) degree of freedom ( \( \chi\) EFT) for energies between 50 and 120MeV. The \( \gamma\) 3He amplitude is complete at N \( ^{3}\) LO, \( {O}(\mathrm{e}^2\delta^3)\) , and in general converges well order by order. It includes the dominant pion-loop and two-body currents, as well as the Delta excitation in the single-nucleon amplitude. Since the cross section is two to three times that for deuterium and the spin of polarised 3He is predominantly carried by its constituent neutron, elastic Compton scattering promises information on both the scalar and spin polarisabilities of the neutron. We study in detail the sensitivities of 4 observables to the neutron polarisabilities: the cross section, the beam asymmetry and two double asymmetries resulting from circularly polarised photons and a longitudinally or transversely polarised target. Including the Delta enhances those asymmetries from which neutron spin polarisabilities could be extracted. We also correct previous, erroneous results at N \( ^{2}\) LO, i.e. without an explicit Delta, and compare to the same observables on proton, neutron and deuterium targets. An interactive Mathematica notebook of our results is available from hgrie@gwu.edu.

References

  1. 1.
    D. Choudhury, PhD Thesis, Ohio University (2006) http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1163711618
  2. 2.
    D. Choudhury, A. Nogga, D.R. Phillips, Phys. Rev. Lett. 98, 232303 (2007) arXiv:nucl-th/0701078ADSCrossRefGoogle Scholar
  3. 3.
    D. Shukla, A. Nogga, D.R. Phillips, Nucl. Phys. A 819, 98 (2009) arXiv:0812.0138 [nucl-th]ADSCrossRefGoogle Scholar
  4. 4.
    D. Shukla, A. Nogga, D.R. Phillips, Phys. Rev. Lett. 120, 249901 (2018) arXiv:1804.01206 [nucl-th]ADSCrossRefGoogle Scholar
  5. 5.
    H. Weller, M. Ahmed, G. Feldman, J. Mueller, L. Myers, M. Sikora, W. Zimmerman, PoS CD 12, 112 (2013)Google Scholar
  6. 6.
    J.R.M. Annand, B. Strandberg, H.-J. Arends, A. Thomas, E. Downie, D. Hornidge, M. Thomas, V. Sokoyan, PoS CD 15, 092 (2015)Google Scholar
  7. 7.
    Programme-Advisory Committee Reports 2009 to 2017, with list of approved experiments at www.tunl.duke.edu/higs/experiments/approved/
  8. 8.
    M. Ahmed, C.R. Howell, H.R. Weller, private communication (2017)Google Scholar
  9. 9.
    J.R.M. Annand, W. Briscoe, E.J. Downie, private communication (2017)Google Scholar
  10. 10.
    V. Bernard, N. Kaiser, U.G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995) arXiv:hep-ph/9501384ADSCrossRefGoogle Scholar
  11. 11.
    V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008) arXiv:0706.0312 [hep-ph]ADSCrossRefGoogle Scholar
  12. 12.
    S. Scherer, M.R. Schindler, Lecture Notes in Physics, Vol. 830 (Springer-Verlag, Berlin, Heidelberg, 2012)kGoogle Scholar
  13. 13.
    P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002) arXiv:nucl-th/0203055ADSCrossRefGoogle Scholar
  14. 14.
    E. Epelbaum, arXiv:1001.3229 [nucl-th]Google Scholar
  15. 15.
    R. Machleidt, F. Sammarruca, Phys. Scr. 91, 083007 (2016) arXiv:1608.05978 [nucl-th]ADSCrossRefGoogle Scholar
  16. 16.
    E.E. Jenkins, A.V. Manohar, in Dobogokoe 1991, Proceedings, Effective field theories of the standard model, p. 113 and Calif. Univ. San Diego -- UCSD-PTH 91-30Google Scholar
  17. 17.
    T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Lett. B 395, 89 (1997) arXiv:hep-ph/9606456ADSCrossRefGoogle Scholar
  18. 18.
    T.R. Hemmert, B.R. Holstein, J. Kambor, J. Phys. G 24, 1831 (1998) arXiv:hep-ph/9712496ADSCrossRefGoogle Scholar
  19. 19.
    V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003) arXiv:nucl-th/0212024ADSCrossRefGoogle Scholar
  20. 20.
    R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Phys. Rev. C 92, 024005 (2015) arXiv:1506.01343 [nucl-th]ADSCrossRefGoogle Scholar
  21. 21.
    H.W. Grießhammer, J.A. McGovern, D.R. Phillips, Eur. Phys. J. A 52, 139 (2016) arXiv:1511.01952 [nucl-th]ADSCrossRefGoogle Scholar
  22. 22.
    V. Bernard, N. Kaiser, U.G. Meißner, Phys. Rev. Lett. 67, 1515 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    S.R. Beane, M. Malheiro, D.R. Phillips, U. van Kolck, Nucl. Phys. A 656, 367 (1999) arXiv:nucl-th/9905023ADSCrossRefGoogle Scholar
  24. 24.
    R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, B. Pasquini, Eur. Phys. J. A 20, 293 (2004) arXiv:nucl-th/0307070ADSCrossRefGoogle Scholar
  25. 25.
    R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, D.R. Phillips, Nucl. Phys. A 748, 573 (2005) arXiv:nucl-th/0405077ADSCrossRefGoogle Scholar
  26. 26.
    R.P. Hildebrandt, PhD Thesis, Technische Universität München (2005) arXiv:nucl-th/0512064Google Scholar
  27. 27.
    R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, Eur. Phys. J. A 46, 111 (2010) arXiv:nucl-th/0512063ADSCrossRefGoogle Scholar
  28. 28.
    S. Weinberg, Nucl. Phys. B 363, 3 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    S. Weinberg, Phys. Lett. B 295, 114 (1992) arXiv:hep-ph/9209257ADSCrossRefGoogle Scholar
  30. 30.
    D.R. Phillips, Annu. Rev. Nucl. Part. Sci. 66, 421 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    COMPTON@MAX-lab Collaboration (L.S. Myers et al.), Phys. Rev. Lett. 113, 262506 (2014) arXiv:1409.3705 [nucl-ex]ADSCrossRefGoogle Scholar
  32. 32.
    L.S. Myers et al., Phys. Rev. C 92, 025203 (2015) arXiv:1503.08094 [nucl-ex]ADSCrossRefGoogle Scholar
  33. 33.
    V. Olmos de León et al., Eur. Phys. J. A 10, 207 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    M.I. Levchuk, A.I. L’vov, Nucl. Phys. A 674, 449 (2000) arXiv:nucl-th/9909066ADSCrossRefGoogle Scholar
  35. 35.
    K. Kossert, M. Camen, F. Wissmann, J. Ahrens, J.R.M. Annand, H.J. Arends, R. Beck, G. Caselotti et al., Eur. Phys. J. A 16, 259 (2003) arXiv:nucl-ex/0210020ADSCrossRefGoogle Scholar
  36. 36.
    B. Demissie, H.W. Grießhammer, PoS CD 15, 097 (2016) arXiv:1612.07351 [nucl-th]Google Scholar
  37. 37.
    B. Demissie, PhD Thesis, George Washington University (2017) https://search.proquest.com/docview/2029153446/141192324D4D47E2PQ/
  38. 38.
    G. Feldman et al., PoS CD 15, 074 (2015)Google Scholar
  39. 39.
    H.W. Grießhammer, J.A. McGovern, D.R. Phillips, Deuteron Compton Scattering and Neutron Polarisabilities at $\calO(e^2\delta^4)$ in $\chi$EFT, in preparationGoogle Scholar
  40. 40.
    H.W. Grießhammer, J.A. McGovern, D.R. Phillips, G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012) arXiv:1203.6834 [nucl-th]ADSCrossRefGoogle Scholar
  41. 41.
    J.A. McGovern, D.R. Phillips, H.W. Grießhammer, Eur. Phys. J. A 49, 12 (2013) arXiv:1210.4104 [nucl-th]ADSCrossRefGoogle Scholar
  42. 42.
    O. Gryniuk, F. Hagelstein, V. Pascalutsa, Phys. Rev. D 92, 074031 (2015) arXiv:1508.07952 [nucl-th]ADSCrossRefGoogle Scholar
  43. 43.
    B.R. Holstein, arXiv:hep-ph/0010129Google Scholar
  44. 44.
    H.W. Grießhammer, J.A. McGovern, D.R. Phillips, Eur. Phys. J. A 54, 37 (2018) arXiv:1711.11546 [nucl-th]ADSCrossRefGoogle Scholar
  45. 45.
    A2 Collaboration (P.P. Martel et al.), Phys. Rev. Lett. 114, 112501 (2015) arXiv:1408.1576 [nucl-ex]ADSCrossRefGoogle Scholar
  46. 46.
    D. Choudhury, D.R. Phillips, Phys. Rev. C 71, 044002 (2005) arXiv:nucl-th/0411001ADSCrossRefGoogle Scholar
  47. 47.
    H.W. Grießhammer, D. Shukla, Eur. Phys. J. A 46, 249 (2010) 48ADSCrossRefGoogle Scholar
  48. 48.
    H.W. Grießhammer, Eur. Phys. J. A 49, 100 (2013) 53ADSCrossRefGoogle Scholar
  49. 49.
    H.W. Grießhammer, Eur. Phys. J. A 54, 57 (2018) arXiv:1304.6594 [nucl-th]ADSCrossRefGoogle Scholar
  50. 50.
    H.W. Grießhammer, A. Margaryan, J.A. McGovern, D.R. Phillips, in preparationGoogle Scholar
  51. 51.
    T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Rev. D 55, 5598 (1997) arXiv:hep-ph/9612374ADSCrossRefGoogle Scholar
  52. 52.
    T.R. Hemmert, B.R. Holstein, J. Kambor, G. Knochlein, Phys. Rev. D 57, 5746 (1998) arXiv:nucl-th/9709063ADSCrossRefGoogle Scholar
  53. 53.
    S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, U. van Kolck, Nucl. Phys. A 747, 311 (2005) arXiv:nucl-th/0403088ADSCrossRefGoogle Scholar
  54. 54.
    S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, R.B. Wiringa, Phys. Rev. C 80, 034004 (2009) arXiv:0906.1800 [nucl-th]ADSCrossRefGoogle Scholar
  55. 55.
    S. Kölling, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 80, 045502 (2009) arXiv:0907.3437 [nucl-th]ADSCrossRefGoogle Scholar
  56. 56.
    S. Kölling, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 84, 054008 (2011) arXiv:1107.0602 [nucl-th]ADSCrossRefGoogle Scholar
  57. 57.
    V.V. Kotlyar, H. Kamada, W. Gloeckle, J. Golak, Few Body Syst. 28, 35 (2000) arXiv:nucl-th/9903079ADSCrossRefGoogle Scholar
  58. 58.
    D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003) arXiv:nucl-th/0304018ADSCrossRefGoogle Scholar
  59. 59.
    U. van Kolck, Phys. Rev. C 49, 2932 (1994)ADSCrossRefGoogle Scholar
  60. 60.
    A. Nogga, P. Navratil, B.R. Barrett, J.P. Vary, Phys. Rev. C 73, 064002 (2006) arXiv:nucl-th/0511082ADSCrossRefGoogle Scholar
  61. 61.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995) arXiv:nucl-th/9408016ADSCrossRefGoogle Scholar
  62. 62.
    B.S. Pudliner, V.R. Pandharipande, J. Carlson, R.B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995) arXiv:nucl-th/9502031ADSCrossRefGoogle Scholar
  63. 63.
    A. Nogga, D. Huber, H. Kamada, W. Gloeckle, Phys. Lett. B 409, 19 (1997) arXiv:nucl-th/9704001ADSCrossRefGoogle Scholar
  64. 64.
    A. Nogga, private communication (2007)Google Scholar
  65. 65.
    D.R. Phillips, PoS CD 12, 013 (2013) arXiv:1302.5959 [nucl-th]Google Scholar
  66. 66.
    S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 118, 202501 (2017) arXiv:1607.04623 [nucl-th]ADSCrossRefGoogle Scholar
  67. 67.
    H. Arenhövel, M. Sanzone, Few Body Syst. Suppl. 3, 1 (1991)CrossRefGoogle Scholar
  68. 68.
    H. Arenhövel, Int. J. Mod. Phys. E 18, 1226 (2009) arXiv:0804.2559 [nucl-th]ADSCrossRefGoogle Scholar
  69. 69.
    H. Paetz gen. Schieck, Nuclear Physics with Polarized targets, Lect. Notes Phys. 842 (Springer, 2012)Google Scholar
  70. 70.
    D. Babusci, G. Giordano, A.I. L’vov, G. Matone, A.M. Nathan, Phys. Rev. C 58, 1013 (1998) arXiv:hep-ph/9803347ADSCrossRefGoogle Scholar
  71. 71.
    M.E. Rose, Elementary Theory of Angular Momentum (Wiley, 1957)Google Scholar
  72. 72.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  73. 73.
    R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, Eur. Phys. J. A 20, 329 (2004) arXiv:nucl-th/0308054ADSCrossRefGoogle Scholar
  74. 74.
    V. Lensky, V. Pascalutsa, Pisma Zh. Eksp. Teor. Fiz. 89, 127 (2009) JETP Lett. 89Google Scholar
  75. 75.
    J.D. Jackson, Classical Electrodynamics (Wiley, 1998). Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Arman Margaryan
    • 1
  • Bruno Strandberg
    • 2
    • 3
  • Harald W. Grießhammer
    • 4
  • Judith A. McGovern
    • 5
  • Daniel R. Phillips
    • 6
  • Deepshikha Shukla
    • 7
  1. 1.L/EFT Group, Department of PhysicsDuke UniversityDurhamUSA
  2. 2.School of Physics and AstronomyUniversity of GlasgowGlasgowUK
  3. 3.NikhefAmsterdamNetherlands
  4. 4.Institute for Nuclear Studies, Department of PhysicsThe George Washington UniversityWashington DCUSA
  5. 5.School of Physics and AstronomyThe University of ManchesterManchesterUK
  6. 6.Department of Physics and Astronomy and Institute of Nuclear and Particle PhysicsOhio UniversityAthensUSA
  7. 7.Department of Mathematics, Computer Science and PhysicsRockford UniversityRockfordUSA

Personalised recommendations