Advertisement

On suprathermal corrections to reaction rates in astrophysical plasmas

  • V. T. Voronchev
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract.

Reaction rates in astrophysical plasma can be affected by suprathermal particles naturally produced in the matter. The influence of this phenomenon on the relation between forward and reverse processes in extremely different astrophysical environments --the primordial and solar core plasmas-- is discussed. The suprathermal components of \( d + d \rightleftarrows n + {}^3\mathrm{He}\) , \( d + d \rightleftarrows p + t\) , \( n + {}^3\mathrm{He} \rightleftarrows p + t\) , \( n + {}^7\mathrm{Be} \rightleftarrows p + {}^7\mathrm{Li}\) , \( p + {}^7\mathrm{Li} \rightleftarrows \alpha + \alpha\) , \( n + {}^7\mathrm{Be} \rightleftarrows \alpha + \alpha\) , \( \alpha + {}^6\mathrm{He} \rightleftarrows n + {}^9\mathrm{Be}\) , and \( p + {}^{18}\mathrm{F} \rightleftarrows \alpha + {}^{15}\mathrm{O}\) reactions induced by MeV neutrons, protons, and \( \alpha\) -particles are calculated and their role is clarified. In the primordial plasma, the reverse rates are partly determined by the suprathermal reactions capable of maintaining the processes as the Universe cools. It the solar core plasma, the reverse process \( \alpha + {}^{15}\mathrm{O} \rightarrow p + {}^{18}\mathrm{F}\) is fully controlled by the suprathermal component, and its rate can become equal to the rate of the forward reaction in the outer core, that nullifies the straightforward nuclear flow between the CNO-I and CNO-III branches. This result together with previous findings on the suprathermal impact on running of the CNO-II branch may serve as an argument to incorporate suprathermal processes in nucleosynthesis calculations for stars fueled by the CNO cycle.

References

  1. 1.
    D.D. Clayton, E. Dwek, M.J. Newman, R.J. Talbot Jr., Astrophys. J. 199, 494 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    M. Coraddu, G. Kaniadakis, A. Lavagno, M. Lissia, G. Mezzorani, P. Quarati, Braz. J. Phys. 29, 153 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Nakao, K. Tsukida, V.T. Voronchev, Phys. Rev. D 84, 063016 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    N.J. Fisch, M.G. Gladush, Y.V. Petrushevich, P. Quarati, A.N. Starostin, Eur. Phys. J. D 66, 154 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S.Q. Hou, J.J. He, A. Parikh, D. Kahl, C. Bertulani, arXiv:1408.4422v1 (2014)Google Scholar
  6. 6.
    W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Ann. Rev. Astron. Astrophys. 5, 525 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    V.T. Voronchev, Y. Nakao, M. Nakamura, J. Phys. G 38, 015201 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    V.T. Voronchev, Y. Nakao, K. Tsukida, M. Nakamura, Phys. Rev. D 85, 067301 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    V.T. Voronchev, Phys. Rev. C 91, 028801 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    V.T. Voronchev, Y. Nakao, Y. Watanabe, Phys. Rev. C 96, 055803 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    V.T. Voronchev, Y. Nakao, Y. Watanabe, J. Phys. G 44, 045202 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952)Google Scholar
  13. 13.
    C. Angulo et al., Nucl. Phys. A 656, 3 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    M.S. Smith, L.H. Kawano, R.A. Malaney, Astrophys. J. Suppl. 85, 219 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    A. Coc, E. Vangioni-Flam, P. Descouvemont, A. Adahchour, C. Angulo, Astrophys. J. 600, 544 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    M. Pospelov, J. Pradler, Phys. Rev. Lett. 106, 121305 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    V.T. Voronchev, Y. Nakao, M. Nakamura, Astrophys. J. 725, 242 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    L. Kawano, Report No. FERMILAB-PUB-92/04-A (1992)Google Scholar
  19. 19.
    Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, H. Utsunomiya, Nucl. Phys. A 918, 61 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam, At. Data Nucl. Data Tables 88, 203 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    S. Ando, R.H. Cyburt, S.W. Hong, C.H. Hyun, Phys. Rev. C 74, 025809 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    ENDF/B-VII.1 Library 2011 National Nuclear Data Center, Brookhaven National Laboratory, http://www.nndc.bnl.gov/sigma/
  25. 25.
    B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, F. Timmes, Astrophys. J. Suppl. Ser. 192, 3 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    E.E. Salpeter, Aust. J. Phys. 7, 373 (1954)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Gruzinov, J.N. Bahcall, Astrophys. J. 504, 996 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    C.R. Brune, J.A. Caggiano, D.B. Sayre, A.D. Bacher, G.M. Hale, M.W. Paris, Phys. Rev. C 92, 014003 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    E.G. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    C. Iliadis, R. Longland, A.E. Champagne, A. Coc, R. Fitzgerald, Nucl. Phys. A 841, 31 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    A.J. Koning, D. Rochman, S.C. van der Marck, J. Kopecky, J.Ch. Sublet, S. Pomp, H. Sjostrand, R. Forrest, E. Bauge, H. Henriksson, TENDL-2012: TALYS-based evaluated nuclear data library, ftp://ftp.nrg.eu/ pub/www/talys/tendl2012/tendl2012.htmlGoogle Scholar
  33. 33.
    C.E. Beer et al., Phys. Rev. C 83, 042801(R) (2011)ADSCrossRefGoogle Scholar
  34. 34.
    D.V. Sivukhin, Rev. Plasma Phys. 4, 93 (1966)ADSGoogle Scholar
  35. 35.
    G. Kamelander, Atomkernenerg. Kerntech. 48, 231 (1986)Google Scholar
  36. 36.
    Y. Nakao, N. Senmyo, N. Nakamura, H. Matsuura, T. Johzaki, V.T. Voronchev, Fusion Sci. Technol. 56, 391 (2009)CrossRefGoogle Scholar
  37. 37.
    H. Brysk, Plasma Phys. 16, 927 (1974)ADSCrossRefGoogle Scholar
  38. 38.
    H. Brysk, P.M. Campbell, P. Hammerling, Plasma Phys. 17, 473 (1975)ADSCrossRefGoogle Scholar
  39. 39.
    J.J. Devaney, M.L. Stein, Nucl. Sci. Eng. 46, 323 (1971)CrossRefGoogle Scholar
  40. 40.
    Y. Nakao, M. Ohta, H. Nakashima, Nucl. Fusion 21, 973 (1981)CrossRefGoogle Scholar
  41. 41.
    M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 71, 083502 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    V.T. Voronchev, N. Nakamura, Y. Nakao, J. Cosmol. Astropart. Phys. 05, 001 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    R.J. Gould, Astrophys. J. 417, 12 (1993)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations