A combination of analysis techniques for efficient track reconstruction of high multiplicity events in silicon detectors

  • Ferenc SiklérEmail author
Special Article - New Tools and Techniques


A novel combination of established data analysis techniques is proposed for the reconstruction of all tracks of primary charged particles created in high energy collisions. It uses all information available in a collision event while keeping competing choices open for as long as possible. Suitable track candidates are selected by transforming measured hits to a binned, three- or four-dimensional, track parameter space. The transformation is based on templates, taking advantage of the translational and rotational symmetries of a given detector. Subsequently, their number is further narrowed down by a Kalman filter-based technique. Track candidates and their corresponding hits form a highly connected network, a bipartite graph, where one allows for multiple assignments of hits to track candidates. The graph is cut into very many minigraphs by removing a few of its components. Finally, the hits are distributed among the track candidates by exploring a deterministic decision tree. A depth-limited search is performed, maximising the number of hits on tracks and minimising the sum of track-fit \(\chi^{2}\). Simplified models of LHC silicon trackers, as well as the relevant physics processes, are employed to study the performance (efficiency, purity, timing) of the proposed method in the case of single or many simultaneous proton-proton collisions (so-called event pile-up), and for single heavy-ion collisions at the highest available energies.


  1. 1.
    ATLAS Collaboration (G. Aad et al.), Eur. Phys. J. C 76, 581 (2016) arXiv:1510.03823CrossRefADSGoogle Scholar
  2. 2.
    CMS Collaboration (M. Rovere), J. Phys. Conf. Ser. 664, 072040 (2015)CrossRefGoogle Scholar
  3. 3.
    R. Fruhwirth, Comput. Phys. Commun. 78, 23 (1993)CrossRefADSGoogle Scholar
  4. 4.
    ALICE Collaboration (K. Aamodt et al.), JINST 3, S08002 (2008)ADSGoogle Scholar
  5. 5.
    C. Cheshkov, Nucl. Instrum. Methods A 566, 35 (2006)CrossRefADSGoogle Scholar
  6. 6.
    ATLAS Collaboration (G. Aad et al.), JINST 3, S08003 (2008)Google Scholar
  7. 7.
    ATLAS Collaboration (B. Mindur), Nucl. Instrum. Methods A 845, 257 (2017)CrossRefADSGoogle Scholar
  8. 8.
    A. Strandlie, Nucl. Instrum. Methods A 535, 57 (2004)CrossRefADSGoogle Scholar
  9. 9.
    CMS Collaboration (S. Chatrchyan et al.), JINST 3, S08004 (2008)ADSGoogle Scholar
  10. 10.
    M. Lamont, J. Phys. Conf. Ser. 455, 012001 (2013)CrossRefGoogle Scholar
  11. 11.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)CrossRefADSGoogle Scholar
  12. 12.
    H. Bichsel, Rev. Mod. Phys. 60, 663 (1988)CrossRefADSGoogle Scholar
  13. 13.
    R.E. Kalman, J. Basic Eng. 82, 35 (1960)CrossRefGoogle Scholar
  14. 14.
    R. Fruhwirth, Nucl. Instrum. Methods A 262, 444 (1987)CrossRefADSGoogle Scholar
  15. 15.
    P.V.C. Hough, Tech. rep. (1962), US Patent 3069654Google Scholar
  16. 16.
    R. Diestel, Graph Theory, Graduate Texts in Mathematics (Springer, Berlin, Heidelberg, 2017)Google Scholar
  17. 17.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008) arXiv:0710.3820CrossRefADSGoogle Scholar
  18. 18.
    CMS Collaboration (V. Khachatryan et al.), Phys. Lett. B 751, 143 (2015) arXiv:1507.05915CrossRefGoogle Scholar
  19. 19.
    ALICE Collaboration (J. Adam et al.), Phys. Lett. B 753, 319 (2016) arXiv:1509.08734CrossRefADSGoogle Scholar
  20. 20.
    ATLAS Collaboration (G. Aad et al.), Phys. Lett. B 758, 67 (2016) arXiv:1602.01633CrossRefADSGoogle Scholar
  21. 21.
    I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 45, 211 (2006) arXiv:hep-ph/0506189CrossRefADSGoogle Scholar
  22. 22.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. Lett. 116, 222302 (2016) arXiv:1512.06104CrossRefADSGoogle Scholar
  23. 23.
    CMS Collaboration (A.M. Sirunyan et al.), Phys. Rev. D 96, 112003 (2017) arXiv:1706.10194CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wigner Research Centre for PhysicsBudapestHungary

Personalised recommendations