Advertisement

Optimized chiral N2LO interactions in nuclear matter

  • Domenico Logoteta
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract.

We employ modern two- and three-nucleon interactions derived in chiral perturbation theory (ChPT) at next to-next-to leading order (N2LO), to calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present results concerning two optimized versions at N2LO of chiral potentials (\( \mathrm{N2LO}_{opt}\)), fitted to properties of light nuclei. We also employ the recently developed \(\mathrm{N2LO}_{sat}\) interaction which has been calculated at the same order of ChPT but fitted in a very different way compared with the \(\mathrm{N2LO}_{opt}\) interactions. We find that using these potentials, in general, it is not possible to reproduce all the saturation properties of nuclear matter. In particular the behaviour of the symmetry energy ( \(E_{sym}\) predicted by the interactions considered is quite soft. This is shown comparing our results with the empirical constraints on \(E_{sym}\) obtained from the data analysis of the excitation energies of isobaric analog states in nuclei and from experimental data of the neutron skin thickness of heavy nuclei. We finally confront our results with similar calculations performed by other research groups using nuclear chiral interactions at various order of ChPT and employing different many-body methods.

References

  1. 1.
    S. Weimberg, Physica A 96, 327 (1979)ADSGoogle Scholar
  2. 2.
    S. Weimberg, Phys. Lett. B 251, 288 (1990)ADSGoogle Scholar
  3. 3.
    S. Weimberg, Nucl. Phys. B 363, 3 (1991)ADSGoogle Scholar
  4. 4.
    S. Weimberg, Phys. Lett. B 259, 114 (1992)ADSGoogle Scholar
  5. 5.
    E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006)ADSGoogle Scholar
  6. 6.
    E. Epelbaum, H.-W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)ADSGoogle Scholar
  7. 7.
    R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)ADSGoogle Scholar
  8. 8.
    J.W. Holt, N. Kaiser, W. Weise, Prog. Part. Nucl. Phys. 73, 35 (2013)ADSGoogle Scholar
  9. 9.
    N. Kalantar-Nayestanaki, E. Epelbaum, J.S. Messchendorp, A. Nogga, Rep. Prog. Phys. 75, 016301 (2012)ADSGoogle Scholar
  10. 10.
    H.W. Hammer, A. Nogga, A. Schenk, Rev. Mod. Phys. 85, 197 (2013)ADSGoogle Scholar
  11. 11.
    S. Binder et al., Phys. Rev. C 93, 044002 (2016)ADSGoogle Scholar
  12. 12.
    A. Ekström, G.R. Jansen, K.A. Wendt, G. Hagen, T. Papenbrock, B.D. Carlsson, C. Forssén, M. Hjorth-Jensen, P. Navrátil, W. Nazarewicz, Phys. Rev. C 91, 051301(R) (2015)ADSGoogle Scholar
  13. 13.
    R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navratil, Phys. Rev. Lett. 109, 052501 (2014)ADSGoogle Scholar
  14. 14.
    S. Binder, J. Langhammer, A. Calci, R. Roth, Phys. Lett. B 736, 119 (2014)ADSGoogle Scholar
  15. 15.
    R.J. Furnstahl, D.R. Phillips, S. Wesolowski, J. Phys. G 42, 034028 (2015)ADSGoogle Scholar
  16. 16.
    R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Phys. Rev. C 92, 024005 (2015)ADSGoogle Scholar
  17. 17.
    A. Ekström, G. Baardsen, C. Forssn, G. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt, W. Nazarewicz, T. Papenbrock, J. Sarich, S.M. Wild, Phys. Rev. Lett. 110, 192502 (2013)ADSGoogle Scholar
  18. 18.
    A. Ekström, G.R. Jansen, K.A. Wendt, G. Hagen, T. Papenbrock, S. Bacca, B. Carlsson, D. Gazit, Phys. Rev. Lett. 113, 262504 (2014)ADSGoogle Scholar
  19. 19.
    B.D. Day, Rev. Mod. Phys. 39, 719 (1967)ADSGoogle Scholar
  20. 20.
    M. Baldo, G.F. Burgio, Rep. Prog. Phys. 75, 026301 (2012)ADSGoogle Scholar
  21. 21.
    D. Logoteta, I. Vidaña, I. Bombaci, A. Kievsky, Phys. Rev. C 91, 064001 (2015)ADSGoogle Scholar
  22. 22.
    D. Logoteta, I. Bombaci, A. Kievsky, Phys. Lett. B 758, 449 (2016)ADSGoogle Scholar
  23. 23.
    D. Logoteta, I. Bombaci, A. Kievsky, Phys. Rev. C 94, 064001 (2016)ADSGoogle Scholar
  24. 24.
    K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010)ADSGoogle Scholar
  25. 25.
    I. Tews, T. Krueger, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 110, 032504 (2013)ADSGoogle Scholar
  26. 26.
    A. Roggero, A. Mukherjee, F. Pederiva, Phys. Rev. Lett. 112, 221103 (2014)ADSGoogle Scholar
  27. 27.
    G. Wlazlowski, J.W. Holt, S. Moroz, A. Bulgac, K.J. Roche, Phys. Rev. Lett. 113, 182503 (2014)ADSGoogle Scholar
  28. 28.
    S. Gandolfi, A. Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015)ADSGoogle Scholar
  29. 29.
    I. Tews, S. Gandolfi, A. Gezerlis, A. Schwenk, Phys. Rev. C 93, 024305 (2016)ADSGoogle Scholar
  30. 30.
    K. Hebeler A. Schwenk, Eur. Phys. J. A 50, 11 (2014)ADSGoogle Scholar
  31. 31.
    C. Drischler, A. Carbone, K. Hebeler, A. Schwenk, arXiv:1608.05615 (2016)Google Scholar
  32. 32.
    K. Hebeler, S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Phys. Rev. C 83, 031301(R) (2011)ADSGoogle Scholar
  33. 33.
    Z.H. Li, H.-J. Schulze, Phys. Rev. C 85, 064002 (2012)ADSGoogle Scholar
  34. 34.
    A. Carbone, A. Polls, A. Rios, Phys. Rev. C 88, 044302 (2013)ADSGoogle Scholar
  35. 35.
    L. Coraggio, J.W. Holt, N. Itaco, R. Machleidt, L.E. Marcucci, F. Sammarruca, Phys. Rev. C 89, 044321 (2014)ADSGoogle Scholar
  36. 36.
    M. Kohno, Prog. Theor. Exp. Phys. 2015, 123D02 (2015)CrossRefGoogle Scholar
  37. 37.
    I. Bombaci, D. Logoteta, Astron. Astrophys. 609, A128 (2018)ADSGoogle Scholar
  38. 38.
    E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. Lett. 115, 122301 (2015)ADSGoogle Scholar
  39. 39.
    D.R. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Phys. Rev. C 91, 014002 (2015)ADSGoogle Scholar
  40. 40.
    D.R. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Phys. Rev. C 92, 064001 (2015)ADSGoogle Scholar
  41. 41.
    M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato, L.E. Marcucci, S.C. Pieper, M. Viviani, R.B. Wiringa, arXiv:1606.06335 (2016)Google Scholar
  42. 42.
    M. Piarulli, L. Girlanda, R. Schiavilla, R. Navarro Perez, J.E. Amaro, E. Ruiz Arriola, Phys. Rev. C 91, 024003 (2015)ADSGoogle Scholar
  43. 43.
    V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 77, 064004 (2008)ADSGoogle Scholar
  44. 44.
    V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 84, 054001 (2011)ADSGoogle Scholar
  45. 45.
    L. Girlanda, A. Kievsky, M. Viviani, Phys. Rev. C 84, 014001 (2011)ADSGoogle Scholar
  46. 46.
    M. Kortelainen, T. Lesinski, J. Mor, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Phys. Rev. C 82, 024313 (2010)ADSGoogle Scholar
  47. 47.
    E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, Ulf-G. Meißner, H. Witała, Phys. Rev. C 66, 064001 (2002)ADSGoogle Scholar
  48. 48.
    A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. C 90, 054323 (2014)ADSGoogle Scholar
  49. 49.
    R. Schiavilla, unpublishedGoogle Scholar
  50. 50.
    M.C.M. Rentmeester, R.G.E. Timmermans, J.J. de Swart, Phys. Rev. C 67, 044001 (2003)ADSGoogle Scholar
  51. 51.
    D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001(R) (2003)ADSGoogle Scholar
  52. 52.
    C. Drischler, V. Somà, A. Schwenk, Phys. Rev. C 89, 025806 (2014)ADSGoogle Scholar
  53. 53.
    I. Vidaña, I. Bombaci, Phys. Rev. C 66, 045801 (2002)ADSGoogle Scholar
  54. 54.
    I. Bombaci, A. Polls, A. Ramos, A. Rios, I. Vidaña, Phys. Lett. B 632, 638 (2006)ADSGoogle Scholar
  55. 55.
    J.P. Jeukenne, A. Lejeunne, C. Mahaux, Phys. Rep. 25, 83 (1976)ADSGoogle Scholar
  56. 56.
    P. Grangé, J. Cugnon, A. Lejeune, Nucl. Phys. A 473, 365 (1987)ADSGoogle Scholar
  57. 57.
    M. Baldo, I. Bombaci, G. Giansiracusa, U. Lombardo, C. Mahaux, R. Sartor, Phys. Rev. C 41, 1748 (1990)ADSGoogle Scholar
  58. 58.
    M. Baldo, I. Bombaci, L.S. Ferreira, G. Giansiracusa, U. Lombardo, Phys. Rev. C 43, 2605 (1991)ADSGoogle Scholar
  59. 59.
    H.Q. Song, M. Baldo, G. Giansiracusa, U. Lombardo, Phys. Rev. Lett. 81, 1584 (1998)ADSGoogle Scholar
  60. 60.
    M. Baldo, G. Giansiracusa, U. Lombardo, H.Q. Song, Phys. Lett. B 473, 1 (2000)ADSGoogle Scholar
  61. 61.
    M. Baldo, I. Bombaci, G. Giansiracusa, U. Lombardo, J. Phys. G: Nucl. Part. Phys. 16, L263 (1990)ADSGoogle Scholar
  62. 62.
    F. Coester, S. Cohen, B. Day, C.M. Vincent, Phys. Rev. C 1, 769 (1970)ADSGoogle Scholar
  63. 63.
    B. Day, Phys. Rev. Lett. 47, 226 (1981)ADSGoogle Scholar
  64. 64.
    Z.H. Li, U. Lombardo, H.-J. Schulze, W. Zuo, L.W. Chen, H.R. Ma, Phys. Rev. C 74, 047304 (2006)ADSGoogle Scholar
  65. 65.
    B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981)ADSGoogle Scholar
  66. 66.
    M. Baldo, I. Bombaci, G.F. Burgio, Astron. Astrophys. 328, 274 (1997)ADSGoogle Scholar
  67. 67.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)ADSGoogle Scholar
  68. 68.
    Z.H. Li, U. Lombardo, H.J. Schulze, W. Zuo, Phys. Rev. C 77, 034316 (2008)ADSGoogle Scholar
  69. 69.
    G. Taranto, M. Baldo, G.F. Burgio, Phys. Rev. C 87, 045803 (2013)ADSGoogle Scholar
  70. 70.
    W. Zuo, I. Bombaci, U. Lombardo, Eur. Phys. J. A 50, 12 (2014)ADSGoogle Scholar
  71. 71.
    Z.H. Li, H.-J. Schulze, Phys. Rev. C 78, 028801 (2008)ADSGoogle Scholar
  72. 72.
    N. Chamel, A.F. Fantina, J.M. Paearson, S. Goriely, Phys. Rev. C 84, 062802(R) (2011)ADSGoogle Scholar
  73. 73.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)ADSGoogle Scholar
  74. 74.
    J. Antoniadis et al., Science 340, 1233232 (2013)CrossRefGoogle Scholar
  75. 75.
    H.A. Bethe, Phys. Rev. 138, 804B (1965)ADSGoogle Scholar
  76. 76.
    R. Rajaraman, H.A. Bethe, Rev. Mod. Phys. 39, 745 (1967)ADSGoogle Scholar
  77. 77.
    B.A. Loiseau, Y. Nogami, C.K. Ross, Nucl. Phys. A 401, 601 (1971)ADSGoogle Scholar
  78. 78.
    P. Grangé, A. Lejeunne, B. Martzolff, J.-F. Mathiot, Phys. Rev. C 40, 1040 (1989)ADSGoogle Scholar
  79. 79.
    J.W. Holt, N. Kaiser, W. Weise, Phys. Rev. C 81, 024002 (2010)ADSGoogle Scholar
  80. 80.
    C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93, 054314 (2016)ADSGoogle Scholar
  81. 81.
    W. Zuo, I. Bombaci, U. Lombardo, Phys. Rev. C 60, 024605 (1999)ADSGoogle Scholar
  82. 82.
    A.H. Lippok, H. Müther, Phys. Rev. C 92, 034312 (2015)ADSGoogle Scholar
  83. 83.
    G. Hagen, T. Papenbrock, A. Ekström, K.A. Wendt, G. Baardsen, S. Gandolfi, M. Hjorth-Jensen, C.J. Horowitz, Phys. Rev. C 89, 014319 (2014)ADSGoogle Scholar
  84. 84.
    I. Bombaci, U. Lombardo, Phys. Rev. C 44, 1892 (1991)ADSGoogle Scholar
  85. 85.
    B.A. Li, A. Ramos, G. Verde, I. Vidaña (Editors), Topical issue on Nuclear Symmetry Energy, Eur. Phys. J. A, Vol. 50 (Springer, SIF, 2014)Google Scholar
  86. 86.
    M. Baldo, G.F. Burgio, Prog. Part. Nucl. Phys. 91, 203 (2016)ADSGoogle Scholar
  87. 87.
    A.W. Steiner, Phys. Rev. C 74, 045808 (2006)ADSGoogle Scholar
  88. 88.
    W.M. Seif, D.N. Basu, Phys. Rev. C 89, 028801 (2014)ADSGoogle Scholar
  89. 89.
    N. Kaiser, Phys. Rev. C 91, 065201 (2015)ADSGoogle Scholar
  90. 90.
    P. Danielewicz, J. Lee, Nucl. Phys. A 922, 1 (2014)ADSGoogle Scholar
  91. 91.
    X. Roca-Maza et al., Phys. Rev. C 87, 034301 (2013)ADSGoogle Scholar
  92. 92.
    Z. Zhang, L.-W. Chen, Phys. Lett. B 726, 234 (2013)ADSGoogle Scholar
  93. 93.
    J.M. Lattimer, Gen. Rel. Gravit. 46, 1713 (2014)MathSciNetADSGoogle Scholar
  94. 94.
    Z.H. Li, H.-J. Schulze, Phys. Rev. C 78, 028801 (2008)ADSGoogle Scholar
  95. 95.
    I. Vidaña, C. Providência, A. Polls, A. Rios, Phys. Rev. C 80, 045806 (2009)ADSGoogle Scholar
  96. 96.
    I. Vidaña, A. Polls, C. Providência, Phys. Rev. C 84, 062801(R) (2011)ADSGoogle Scholar
  97. 97.
    M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, J.M. Lattimer, R. Knorren, Phys. Rep. 280, 1 (1997)ADSGoogle Scholar
  98. 98.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010)ADSGoogle Scholar
  99. 99.
    I. Vidaña, D. Logoteta, C. Providência, A. Polls, I. Bombaci, EPL 94, 11002 (2011)ADSGoogle Scholar
  100. 100.
    I. Bombaci, T.T.S. Kuo, U. Lombardo, Phys. Lett. B 311, 9 (1993)ADSGoogle Scholar
  101. 101.
    A. Burrows, Rev. Mod. Phys. 85, 245 (2013)ADSGoogle Scholar
  102. 102.
    J.P. Blaizot, D. Gogny, B. Grammaticos, Nucl. Phys. A 265, 315 (1976)ADSGoogle Scholar
  103. 103.
    S. Sholmo, V.K. Kolomietz, G. Colò, Eur. Phys. J. A 30, 23 (2006)ADSGoogle Scholar
  104. 104.
    J.R. Stone, N.J. Stone, S.A. Moszkowski, Phys. Rev. C 89, 044316 (2014)ADSGoogle Scholar
  105. 105.
    E. Epelbaum, W. Glockle, U.-G. Meissner, Eur. Phys. J. A 19, 401 (2004)ADSGoogle Scholar
  106. 106.
    E. Epelbaum, W. Glockle, U.-G. Meissner, Nucl. Phys. A 747, 362 (2005)ADSGoogle Scholar
  107. 107.
    G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Rep. Prog. Phys. 77, 096302 (2014)ADSGoogle Scholar
  108. 108.
    S.K. Bogner, R.J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)ADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INFN, Sezione di PisaPisaItaly

Personalised recommendations