Advertisement

The impact of neutron emission on correlated fission data from the 2E-2v method

  • Kaj Jansson
  • Ali Al-Adili
  • Erik Andersson Sundén
  • Alf Göök
  • Stephan Oberstedt
  • Stephan Pomp
Regular Article - Experimental Physics
  • 21 Downloads

Abstract.

The double-energy double-velocity (2E-2v) method allows assessing fission-fragment mass yields prior to and after prompt neutron emission with high resolution. It is, therefore, considered as a complementary technique to assess average prompt neutron multiplicity as a function of fragment properties. We have studied the intrinsic features of the 2E-2v method by means of event-wise generated fission-fragment data and found short-comings in the method itself as well as in some common practices of application. We find that the 2E-2v method leads to large deviations in the correlation between the prompt neutron multiplicity and pre-neutron mass, which deforms and exaggerates the so-called “sawtooth” shape of \(\bar{\nu}(A)\). We have identified the treatment of prompt neutron emission from the fragments as the origin of the problem. The intrinsic nature of this deficiency risks to render 2E-2v experiments less interesting. We suggest a method to correct 2E-2v data that can even be applied on existing measurements.

References

  1. 1.
    C. Budtz-ørgensen, H.-H. Knitter, Ch. Straede, F.-J. Hambsch, R. Vogt, Nucl. Instrum. Methods A 258, 209 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    E. Moll, H. Schrader, G. Siegert, M. Asghar, J.P. Bocquet, G. Bailleul, J.P. Gautheron, J. Greif, G.I. Crawford, C. Chauvin, H. Ewald, H. Wollnik, P. Armbruster, G. Fiebig, H. Lawin, K. Sistemich, Nucl. Instrum. Methods 123, 615 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    A. Oed, P. Geltenbort, R. Brissot, F. Gönnenwein, P. Perrin, E. Aker, D. Engelhardt, Nucl. Instrum. Methods 219, 569 (1984)CrossRefGoogle Scholar
  4. 4.
    K. Jansson, M.-O. Frégeau, A. Al-Adili, A. Göök, C. Gustavsson, F.-J. Hambsch, S. Oberstedt, S. Pomp, EPJ Web of Conferences 146, 04016 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Meierbachtol, F. Tovesson, D. Shields, C. Arnold, R. Blakeley, T. Bredeweg, M. Devlin, A.A. Hecht, L.E. Heffern, J. Jorgenson, A. Laptev, D. Mader, J.M. O’Donnell, A. Sierk, M. White, Nucl. Instrum. Methods Phys. Res. Sect. A 788, 59 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    D. Doré, F. Farget, F.-R. Lecolley, G. Lehaut, T. Materna, J. Pancin, S. Panebianco, Th. Papaevangelou, Nucl. Data Sheets 119, 346 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J. Matarranz, I. Tsekhanovich, A.G. Smith, J.A. Dare, L. Murray, A.J. Pollitt, T. Soldner, U. Koster, D.C. Biswas, Phys. Procedia 47, 76 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)CrossRefGoogle Scholar
  11. 11.
    Rene Brun and Fons Rademakers. Nucl. Instrum. Methods A389811996Google Scholar
  12. 12.
    W.E. Stein, Phys. Rev. 108, 94 (1957)ADSCrossRefGoogle Scholar
  13. 13.
    K. Nishio, Y. Nakagome, I. Kanno, I. Kimura, J. Nucl. Sci. Technol. 32, 404 (1995)CrossRefGoogle Scholar
  14. 14.
    J. Velkovska, R.L. McGrath, Nucl. Instrum. Methods Phys. Res. Sect. A 430, 507 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    K.-Th. Brinkmann, J. Kiesewetter, F.M. Baumann, H. Freiesleben, H.J. Lütke-Stetzkamp, H.J. Paul, H.G. Schwanke, H. Sohlbach, Nucl. Instrum. Methods A 276, 557 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    R. Müller, A.A. Naqvi, F. Käppeler, F. Dickmann, Phys. Rev. C 29, 885 (1984)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kaj Jansson
    • 1
  • Ali Al-Adili
    • 1
  • Erik Andersson Sundén
    • 1
  • Alf Göök
    • 2
  • Stephan Oberstedt
    • 2
  • Stephan Pomp
    • 1
  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  2. 2.European Commission, DG Joint Research Centre, Directorate G - Nuclear Safety and Security, Unit G.2 SN3SGeelBelgium

Personalised recommendations