Advertisement

The impact of \(K^{+}\Lambda\) photoproduction on the resonance spectrum

  • D. Rönchen
  • M. Döring
  • U. -G. Meißner
Regular Article - Theoretical Physics

Abstract.

The Jülich-Bonn coupled-channel framework is extended to \(K^{+}\Lambda\) photoproduction. The spectrum of nucleon and \(\Delta\) resonances is extracted from simultaneous fits to several pion-induced reactions in addition to pion, eta and \(K^{+}\Lambda\) photoproduction off the proton. More than 40000 data points up to a center-of-mass energy of \( E\sim 2.3\) GeV including recently measured double-polarization observables are analyzed. The influence of the \( \gamma p\rightarrow K^{+}\Lambda\) channel on the extracted resonance parameters and the appearance of states not seen in other channels is investigated. The Jülich-Bonn model includes effective three-body channels and guarantees unitarity and analyticity, which is a prerequisite for a reliable determination of the resonance spectrum in terms of poles and residues.

References

  1. 1.
    G. Höhler, in Pion Nucleon Scattering, edited by H. Schopper, Landolt Börnstein, New Series, Group 9b, Vol. I (Springer, New York, 1983)Google Scholar
  2. 2.
    R.E. Cutkosky, C.P. Forsyth, R.E. Hendrick, R.L. Kelly, Phys. Rev. D 20, 2839 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 74, 045205 (2006) arXiv:nucl-th/0605082ADSCrossRefGoogle Scholar
  4. 4.
    S. Capstick, W. Roberts, Phys. Rev. D 49, 4570 (1994) arXiv:nucl-th/9310030ADSCrossRefGoogle Scholar
  5. 5.
    M. Ronniger, B.C. Metsch, Eur. Phys. J. A 47, 162 (2011) arXiv:1111.3835 [hep-ph]ADSCrossRefGoogle Scholar
  6. 6.
    R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Phys. Rev. D 84, 074508 (2011) arXiv:1104.5152 [hep-ph]ADSCrossRefGoogle Scholar
  7. 7.
    Hadron Spectrum Collaboration (R.G. Edwards et al.), Phys. Rev. D 87, 054506 (2013) arXiv:1212.5236 [hep-ph]Google Scholar
  8. 8.
    C.B. Lang, V. Verduci, Phys. Rev. D 87, 054502 (2013) arXiv:1212.5055ADSCrossRefGoogle Scholar
  9. 9.
    BGR Collaboration (G.P. Engel et al.), Phys. Rev. D 87, 074504 (2013) arXiv:1301.4318 [hep-lat]CrossRefGoogle Scholar
  10. 10.
    C.B. Lang, L. Leskovec, M. Padmanath, S. Prelovsek, Phys. Rev. D 95, 014510 (2017) arXiv:1610.01422 [hep-lat]ADSCrossRefGoogle Scholar
  11. 11.
    A.L. Kiratidis, W. Kamleh, D.B. Leinweber, Z.W. Liu, F.M. Stokes, A.W. Thomas, Phys. Rev. D 95, 074507 (2017) arXiv:1608.03051 [hep-lat]ADSCrossRefGoogle Scholar
  12. 12.
    C.W. Andersen, J. Bulava, B. Hörz, C. Morningstar, Phys. Rev. D 97, 014506 (2018) arXiv:1710.01557 [hep-lat]ADSCrossRefGoogle Scholar
  13. 13.
    R. Koniuk, N. Isgur, Phys. Rev. Lett. 44, 845 (1980)ADSCrossRefGoogle Scholar
  14. 14.
    V. Crede, W. Roberts, Rep. Prog. Phys. 76, 076301 (2013) arXiv:1302.7299 [nucl-ex]ADSCrossRefGoogle Scholar
  15. 15.
    I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013) arXiv:1212.4891 [nucl-th]ADSCrossRefGoogle Scholar
  16. 16.
    E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010) arXiv:0901.2055 [hep-ph]ADSCrossRefGoogle Scholar
  17. 17.
    I.S. Barker, A. Donnachie, J.K. Storrow, Nucl. Phys. B 95, 347 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    W.T. Chiang, F. Tabakin, Phys. Rev. C 55, 2054 (1997) arXiv:nucl-th/9611053ADSCrossRefGoogle Scholar
  19. 19.
    G. Keaton, R. Workman, Phys. Rev. C 54, 1437 (1996) arXiv:nucl-th/9606052ADSCrossRefGoogle Scholar
  20. 20.
    A.M. Sandorfi, S. Hoblit, H. Kamano, T.-S.H. Lee, J. Phys. G 38, 053001 (2011) arXiv:1010.4555 [nucl-th]ADSCrossRefGoogle Scholar
  21. 21.
    D.G. Ireland, Phys. Rev. C 82, 025204 (2010) arXiv:1004.5250 [hep-ph]ADSCrossRefGoogle Scholar
  22. 22.
    J. Nys, T. Vrancx, J. Ryckebusch, J. Phys. G 42, 034016 (2015) arXiv:1502.01259 [nucl-th]ADSCrossRefGoogle Scholar
  23. 23.
    Y. Wunderlich, R. Beck, L. Tiator, Phys. Rev. C 89, 055203 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    R.L. Workman, L. Tiator, Y. Wunderlich, M. Döring, H. Haberzettl, Phys. Rev. C 95, 015206 (2017) arXiv:1611.04434 [nucl-th]ADSCrossRefGoogle Scholar
  25. 25.
    J. Nys, J. Ryckebusch, D.G. Ireland, D.I. Glazier, Phys. Lett. B 759, 260 (2016) arXiv:1603.02001 [hep-ph]ADSGoogle Scholar
  26. 26.
    D. Rönchen et al., Eur. Phys. J. A 49, 44 (2013) arXiv:1211.6998 [nucl-th]ADSCrossRefGoogle Scholar
  27. 27.
    K.W. Bell et al., Nucl. Phys. B 222, 389 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    S. Steininger, U.-G. Meißner, Phys. Lett. B 391, 446 (1997) arXiv:nucl-th/9609051ADSCrossRefGoogle Scholar
  29. 29.
    J. Bijnens, H. Sonoda, M.B. Wise, Nucl. Phys. B 261, 185 (1985)ADSCrossRefGoogle Scholar
  30. 30.
    M. Mai, P.C. Bruns, B. Kubis, U.-G. Meißner, Phys. Rev. D 80, 094006 (2009) arXiv:0905.2810 [hep-ph]ADSCrossRefGoogle Scholar
  31. 31.
    N. Kaiser, T. Waas, W. Weise, Nucl. Phys. A 612, 297 (1997) arXiv:hep-ph/9607459ADSCrossRefGoogle Scholar
  32. 32.
    B. Borasoy, P.C. Bruns, U.-G. Meißner, R. Nißler, Eur. Phys. J. A 34, 161 (2007) arXiv:0709.3181 [nucl-th]ADSCrossRefGoogle Scholar
  33. 33.
    B. Golli, S. Sirca, Eur. Phys. J. A 52, 279 (2016) arXiv:1604.01937 [hep-ph]ADSCrossRefGoogle Scholar
  34. 34.
    T. Mart, C. Bennhold, Phys. Rev. C 61, 012201 (2000) arXiv:nucl-th/9906096ADSCrossRefGoogle Scholar
  35. 35.
    S. Clymton, T. Mart, Phys. Rev. D 96, 054004 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    D. Skoupil, P. Bydžovský, arXiv:1801.07466 [nucl-th]Google Scholar
  37. 37.
    A.V. Anisovich, V. Kleber, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 34, 243 (2007) arXiv:0707.3596 [hep-ph]ADSCrossRefGoogle Scholar
  38. 38.
    A.V. Anisovich et al., Eur. Phys. J. A 50, 129 (2014) arXiv:1404.4587 [nucl-ex]ADSCrossRefGoogle Scholar
  39. 39.
    A.V. Anisovich et al., Phys. Rev. Lett. 119, 062004 (2017) arXiv:1712.07549 [nucl-ex]ADSCrossRefGoogle Scholar
  40. 40.
    A.V. Anisovich et al., Eur. Phys. J. A 53, 242 (2017) arXiv:1712.07537 [nucl-ex]ADSCrossRefGoogle Scholar
  41. 41.
    V. Shklyar, H. Lenske, U. Mosel, Phys. Rev. C 72, 015210 (2005) arXiv:nucl-th/0505010ADSCrossRefGoogle Scholar
  42. 42.
    X. Cao, V. Shklyar, H. Lenske, Phys. Rev. C 88, 055204 (2013) arXiv:1303.2604 [nucl-th]ADSCrossRefGoogle Scholar
  43. 43.
    B.C. Hunt, D.M. Manley, arXiv:1804.07422 [nucl-ex]Google Scholar
  44. 44.
    H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Phys. Rev. C 88, 035209 (2013) arXiv:1305.4351 [nucl-th]ADSCrossRefGoogle Scholar
  45. 45.
    H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Phys. Rev. C 94, 015201 (2016) arXiv:1605.00363 [nucl-th]ADSCrossRefGoogle Scholar
  46. 46.
    B. Julia-Diaz, B. Saghai, T.-S.H. Lee, F. Tabakin, Phys. Rev. C 73, 055204 (2006) arXiv:nucl-th/0601053ADSCrossRefGoogle Scholar
  47. 47.
    N. Suzuki, B. Julia-Diaz, H. Kamano, T.-S.H. Lee, A. Matsuyama, T. Sato, Phys. Rev. Lett. 104, 042302 (2010) arXiv:0909.1356 [nucl-th]ADSCrossRefGoogle Scholar
  48. 48.
    F.X. Lee, T. Mart, C. Bennhold, L.E. Wright, Nucl. Phys. A 695, 237 (2001) arXiv:nucl-th/9907119ADSCrossRefGoogle Scholar
  49. 49.
    L. De Cruz, T. Vrancx, P. Vancraeyveld, J. Ryckebusch, Phys. Rev. Lett. 108, 182002 (2012) arXiv:1111.6511 [nucl-th]ADSCrossRefGoogle Scholar
  50. 50.
    L. De Cruz, J. Ryckebusch, T. Vrancx, P. Vancraeyveld, Phys. Rev. C 86, 015212 (2012) arXiv:1205.2195 [nucl-th]ADSCrossRefGoogle Scholar
  51. 51.
    O.V. Maxwell, Phys. Rev. C 85, 034611 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Phys. Lett. B 681, 26 (2009) arXiv:0903.1781 [nucl-th]ADSCrossRefGoogle Scholar
  53. 53.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Nucl. Phys. A 829, 170 (2009) arXiv:0903.4337 [nucl-th]ADSCrossRefGoogle Scholar
  54. 54.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, D. Rönchen, Nucl. Phys. A 851, 58 (2011) arXiv:1009.3781 [nucl-th]ADSCrossRefGoogle Scholar
  55. 55.
    D. Rönchen et al., Eur. Phys. J. A 50, 101 (2014) 51ADSCrossRefGoogle Scholar
  56. 56.
    C. Schütz, J.W. Durso, K. Holinde, J. Speth, Phys. Rev. C 49, 2671 (1994)ADSCrossRefGoogle Scholar
  57. 57.
    D. Rönchen, M. Döring, H. Haberzettl, J. Haidenbauer, U.-G. Meißner, K. Nakayama, Eur. Phys. J. A 51, 70 (2015) arXiv:1504.01643 [nucl-th]ADSCrossRefGoogle Scholar
  58. 58.
    C.W. Shen, D. Rönchen, U.-G. Meißner, B.S. Zou, Chin. Phys. C 42, 023106 (2018) arXiv:1710.03885 [hep-ph]ADSCrossRefGoogle Scholar
  59. 59.
    R. Aaron, R.D. Amado, J.E. Young, Phys. Rev. 174, 2022 (1968)ADSCrossRefGoogle Scholar
  60. 60.
    M. Mai, B. Hu, M. Döring, A. Pilloni, A. Szczepaniak, Eur. Phys. J. A 53, 177 (2017) arXiv:1706.06118 [nucl-th]ADSCrossRefGoogle Scholar
  61. 61.
    M. Mai, M. Döring, Eur. Phys. J. A 53, 240 (2017) arXiv:1709.08222 [hep-lat]ADSCrossRefGoogle Scholar
  62. 62.
    S. Ceci, M. Döring, C. Hanhart, S. Krewald, U.-G. Meißner, A. Svarc, Phys. Rev. C 84, 015205 (2011) arXiv:1104.3490 [nucl-th]ADSCrossRefGoogle Scholar
  63. 63.
    F. Huang, M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, K. Nakayama, Phys. Rev. C 85, 054003 (2012) arXiv:1110.3833 [nucl-th]ADSCrossRefGoogle Scholar
  64. 64.
    R.L. Workman, M.W. Paris, W.J. Briscoe, I.I. Strakovsky, Phys. Rev. C 86, 015202 (2012) arXiv:1202.0845 [hep-ph]ADSCrossRefGoogle Scholar
  65. 65.
    O. Krehl, C. Hanhart, S. Krewald, J. Speth, Phys. Rev. C 62, 025207 (2000) arXiv:nucl-th/9911080ADSCrossRefGoogle Scholar
  66. 66.
    V. Bernard, N. Kaiser, U.-G. Meißner, Z. Phys. C 70, 483 (1996) arXiv:hep-ph/9411287CrossRefGoogle Scholar
  67. 67.
    The SAID web site allows access to a variety of fits and the associated database. Results can be obtained from http://gwdac.phys.gwu.edu
  68. 68.
    R.M. Davidson, R. Workman, Phys. Rev. C 63, 025210 (2001) arXiv:nucl-th/0101066ADSCrossRefGoogle Scholar
  69. 69.
    R.L. Workman, R.A. Arndt, W.J. Briscoe, M.W. Paris, I.I. Strakovsky, Phys. Rev. C 86, 035202 (2012) arXiv:1204.2277 [hep-ph]ADSCrossRefGoogle Scholar
  70. 70.
    Figures representing the full fit result of this study, including a display of all data, can be downloaded at http://collaborations.fz-juelich.de/ikp/meson-baryon/main
  71. 71.
    Crystal Ball at MAMI Collaboration (T.C. Jude et al.), Phys. Lett. B 735, 112 (2014) arXiv:1308.5659 [nucl-ex]CrossRefGoogle Scholar
  72. 72.
    CLAS Collaboration (M.E. McCracken et al.), Phys. Rev. C 81, 025201 (2010) arXiv:0912.4274 [nucl-ex]CrossRefGoogle Scholar
  73. 73.
    CLAS Collaboration (J.W.C. McNabb et al.), Phys. Rev. C 69, 042201 (2004) arXiv:nucl-ex/0305028CrossRefGoogle Scholar
  74. 74.
    A. Lleres et al., Eur. Phys. J. A 31, 79 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    K.H. Glander et al., Eur. Phys. J. A 19, 251 (2004) arXiv:nucl-ex/0308025ADSCrossRefGoogle Scholar
  76. 76.
    SAPHIR Collaboration (M.Q. Tran et al.), Phys. Lett. B 445, 20 (1998)ADSCrossRefGoogle Scholar
  77. 77.
    M. Bockhorst et al., Z. Phys. C 63, 37 (1994)ADSCrossRefGoogle Scholar
  78. 78.
    R. Haas, T. Miczaika, U. Opara, K. Quabach, W.J. Schwille, Nucl. Phys. B 137, 261 (1978)ADSCrossRefGoogle Scholar
  79. 79.
    T. Fujii et al., Phys. Rev. D 2, 439 (1970)ADSCrossRefGoogle Scholar
  80. 80.
    D.E. Groom, J.H. Marshall, Phys. Rev. 159, 1213 (1967)ADSCrossRefGoogle Scholar
  81. 81.
    M. Grilli, L. Mezzetti, M. Nigro, E. Schiavuta, Nuovo Cimento 38, 1467 (1965)CrossRefGoogle Scholar
  82. 82.
    B. Borgia, M. Grilli, P. Joos, L. Mezzetti, M. Nigro, E. Schiavuta, F. Villa, Nuovo Cimento 32, 218 (1964)CrossRefGoogle Scholar
  83. 83.
    H. Thom, E. Gabathuler, D. Jones, B.D. McDaniel, W.M. Woodward, Phys. Rev. Lett. 11, 433 (1963)ADSCrossRefGoogle Scholar
  84. 84.
    B.D. McDaniel, P. Joos, D. McLeod, S. Richert, D. Zipoy, Phys. Rev. Lett. 4, 33 (1960)ADSCrossRefGoogle Scholar
  85. 85.
    CLAS Collaboration (C.A. Paterson et al.), Phys. Rev. C 93, 065201 (2016) arXiv:1603.06492 [nucl-ex]ADSCrossRefGoogle Scholar
  86. 86.
    LEPS Collaboration (K. Hicks et al.), Phys. Rev. C 76, 042201 (2007)CrossRefGoogle Scholar
  87. 87.
    LEPS Collaboration (M. Sumihama et al.), Phys. Rev. C 73, 035214 (2006) arXiv:hep-ex/0512053Google Scholar
  88. 88.
    LEPS Collaboration (R.G.T. Zegers et al.), Phys. Rev. Lett. 91, 092001 (2003) arXiv:nucl-ex/0302005CrossRefGoogle Scholar
  89. 89.
    GRAAL Collaboration (A. Lleres et al.), Eur. Phys. J. A 39, 149 (2009) arXiv:0807.3839 [nucl-ex]CrossRefGoogle Scholar
  90. 90.
    K.H. Althoff et al., Nucl. Phys. B 137, 269 (1978)ADSCrossRefGoogle Scholar
  91. 91.
    CLAS Collaboration (R.K. Bradford et al.), Phys. Rev. C 75, 035205 (2007) arXiv:nucl-ex/0611034Google Scholar
  92. 92.
    A2 Collaboration at MAMI (C.S. Akondi et al.), Phys. Rev. Lett. 113, 102001 (2014) arXiv:1408.3274 [nucl-ex]ADSCrossRefGoogle Scholar
  93. 93.
    J. Hartmann et al., Phys. Rev. Lett. 113, 062001 (2014) arXiv:1407.2163 [nucl-ex]ADSCrossRefGoogle Scholar
  94. 94.
    CBELSA/TAPS Collaboration (J. Hartmann et al.), Phys. Lett. B 748, 212 (2015) arXiv:1506.06226 [nucl-ex]CrossRefGoogle Scholar
  95. 95.
    CLAS Collaboration (S. Strauch et al.), Phys. Lett. B 750, 53 (2015) arXiv:1503.05163 [nucl-ex]CrossRefGoogle Scholar
  96. 96.
    CLAS Collaboration (I. Senderovich et al.), Phys. Lett. B 755, 64 (2016) arXiv:1507.00325 [nucl-ex]CrossRefGoogle Scholar
  97. 97.
    A2 Collaboration at MAMI (J.R.M. Annand et al.), Phys. Rev. C 93, 055209 (2016)ADSCrossRefGoogle Scholar
  98. 98.
    CBELSA/TAPS Collaboration (A. Thiel et al.), Eur. Phys. J. A 53, 8 (2017) arXiv:1604.02922 [nucl-ex]CrossRefGoogle Scholar
  99. 99.
    P. Collins et al., Phys. Lett. B 771, 213 (2017) arXiv:1703.00433 [nucl-ex]ADSCrossRefGoogle Scholar
  100. 100.
    A.V. Anisovich et al., Eur. Phys. J. A 52, 284 (2016) arXiv:1604.05704 [nucl-th]ADSCrossRefGoogle Scholar
  101. 101.
    A.V. Sarantsev, V.A. Nikonov, A.V. Anisovich, E. Klempt, U. Thoma, Eur. Phys. J. A 25, 441 (2005) arXiv:hep-ex/0506011ADSCrossRefGoogle Scholar
  102. 102.
    T. Mart, A. Sulaksono, Phys. Rev. C 74, 055203 (2006) arXiv:nucl-th/0609077ADSCrossRefGoogle Scholar
  103. 103.
    T. Mart, Int. J. Mod. Phys. E 19, 2343 (2010) arXiv:0904.3601 [nucl-th]ADSCrossRefGoogle Scholar
  104. 104.
    CLAS Collaboration (R. Bradford et al.), Phys. Rev. C 73, 035202 (2006) arXiv:nucl-ex/0509033Google Scholar
  105. 105.
    V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, D.R. Phillips, Nucl. Phys. A 872, 69 (2011) arXiv:1107.5509 [nucl-th]ADSCrossRefGoogle Scholar
  106. 106.
    J. Landay, M. Döring, C. Fernández-Ramírez, B. Hu, R. Molina, Phys. Rev. C 95, 015203 (2017) arXiv:1610.07547 [nucl-th]ADSCrossRefGoogle Scholar
  107. 107.
    Jülich Supercomputing Centre, J. Large-Scale Res. Facil. 2, A62 (2016)CrossRefGoogle Scholar
  108. 108.
    G. D’Agostini, Nucl. Instrum. Methods A 346, 306 (1994)ADSCrossRefGoogle Scholar
  109. 109.
    NNPDF Collaboration (R.D. Ball et al.), JHEP 05, 075 (2010) arXiv:0912.2276 [hep-ph]Google Scholar
  110. 110.
    M. Döring, J. Revier, D. Rönchen, R.L. Workman, Phys. Rev. C 93, 065205 (2016) arXiv:1603.07265 [nucl-th]ADSCrossRefGoogle Scholar
  111. 111.
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, Phys. Rep. 625, 1 (2016) arXiv:1510.06039 [hep-ph]ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, Phys. Rev. Lett. 115, 192301 (2015) arXiv:1507.07552 [nucl-th]ADSCrossRefGoogle Scholar
  113. 113.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016) and 2017 updateADSCrossRefGoogle Scholar
  114. 114.
    R. Tibshirani, J. R. Stat. Soc. B 58, 267 (1996)Google Scholar
  115. 115.
    CBELSA/TAPS Collaboration (E. Gutz et al.), Eur. Phys. J. A 50, 74 (2014) arXiv:1402.4125 [nucl-ex]CrossRefGoogle Scholar
  116. 116.
    M. Shrestha, D.M.M. Manley, Phys. Rev. C 86, 045204 (2012) arXiv:1205.5294 [hep-ph]ADSCrossRefGoogle Scholar
  117. 117.
    R.L. Workman, L. Tiator, A. Sarantsev, Phys. Rev. C 87, 068201 (2013) arXiv:1304.4029 [nucl-th]ADSCrossRefGoogle Scholar
  118. 118.
    A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 15 (2012) arXiv:1112.4937 [hep-ph]ADSCrossRefGoogle Scholar
  119. 119.
    CBELSA/TAPS Collaboration (V. Sokhoyan et al.), Eur. Phys. J. A 51, 95 (2015) 51CrossRefGoogle Scholar
  120. 120.
    R.D. Baker, J.A. Blissett, I.J. Bloodworth, T.A. Broome, G. Conforto, J.C. Hart, C.M. Hughes, R.W. Kraemer et al., Nucl. Phys. B 141, 29 (1978)ADSCrossRefGoogle Scholar
  121. 121.
    D.H. Saxon, R.D. Baker, K.W. Bell, J.A. Blissett, I.J. Bloodworth, T.A. Broome, J.C. Hart, A.L. Lintern et al., Nucl. Phys. B 162, 522 (1980)ADSCrossRefGoogle Scholar
  122. 122.
    T.O. Binford, M.L. Good, V.G. Lind, D. Stern, R. Krauss, E. Dettman, Phys. Rev. 183, 1134 (1969)ADSCrossRefGoogle Scholar
  123. 123.
    O.I. Dahl, L.M. Hardy, R.I. Hess, J. Kirz, D.H. Miller, J.A. Schwartz, Phys. Rev. 163, 1430 (1967) 183ADSCrossRefGoogle Scholar
  124. 124.
    L. Bertanza, P.L. Connolly, B.B. Culwick, F.R. Eisler, T. Morris, R.B. Palmer, A. Prodell, N.P. Samios, Phys. Rev. Lett. 8, 332 (1962)ADSCrossRefGoogle Scholar
  125. 125.
    J.J. Jones, T. Bowen, W.R. Dawes, D.A. Delise, E.W. Jenkins, R.M. Kalbach, E.I. Malamud, K.J. Nield et al., Phys. Rev. Lett. 26, 860 (1971)ADSCrossRefGoogle Scholar
  126. 126.
    O. Van Dyck, R. Blumenthal, S. Frankel, V. Highland, J. Nagy, T. Sloan, M. Takats, W. Wales et al., Phys. Rev. Lett. 23, 50 (1969)ADSCrossRefGoogle Scholar
  127. 127.
    T.M. Knasel, J. Lindquist, B. Nelson, R.L. Sumner, E.C. Swallow, R. Winston, D.M. Wolfe, P.R. Phillips et al., Phys. Rev. D 11, 1 (1975)ADSCrossRefGoogle Scholar
  128. 128.
    J. Keren, Phys. Rev. 133, B457 (1964)ADSCrossRefGoogle Scholar
  129. 129.
    F. Eisler et al., Nuovo Cimento 10, 468 (1958)CrossRefGoogle Scholar
  130. 130.
    L.L. Yoder, C.T. Coffin, D.I. Meyer, K.M. Terwilliger, Phys. Rev. 132, 1778 (1963)ADSCrossRefGoogle Scholar
  131. 131.
    O. Goussu, M. Sene, B. Ghidini, S. Mongelli, A. Romano, P. Waloschek, V. Alles-Borelli, Nuovo Cimento A 42, 606 (1966)ADSCrossRefGoogle Scholar
  132. 132.
    D.H. Miller, A.Z. Kovacs, R. McIlwain, T.R. Palfrey, G.W. Tautfest, Phys. Rev. 140, B360 (1965)ADSCrossRefGoogle Scholar
  133. 133.
    A. Baldini, V. Flamino, W.G. Moorhead, D.R.O. Morrison, in Total Cross Sections of High Energy Particles: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, edited by H. Schopper, Vol. 12a (Springer-Verlag, New York, 1988)Google Scholar
  134. 134.
    D.W. Thomas, A. Engler, H.E. Fisk, R.W. Kraemer, Nucl. Phys. B 56, 15 (1973)ADSCrossRefGoogle Scholar
  135. 135.
    F.S. Crawford Jr. et al., Phys. Rev. Lett. 3, 394 (1959)ADSCrossRefGoogle Scholar
  136. 136.
    M.L. Good, R.R. Kofler, Phys. Rev. 183, 1142 (1969)ADSCrossRefGoogle Scholar
  137. 137.
    J.C. Doyle, F.S. Crawford, J.A. Anderson, Phys. Rev. 165, 1483 (1968)ADSCrossRefGoogle Scholar
  138. 138.
    A. Martínez Torres, K.P. Khemchandani, U.-G. Meißner, E. Oset, Eur. Phys. J. A 41, 361 (2009) arXiv:0902.3633 [nucl-th]ADSCrossRefGoogle Scholar
  139. 139.
    V.A. Nikonov, A.V. Anisovich, E. Klempt, A.V. Sarantsev, U. Thoma, Phys. Lett. B 662, 245 (2008) arXiv:0707.3600 [hep-ph]ADSCrossRefGoogle Scholar
  140. 140.
    T. Mart, M.J. Kholili, Phys. Rev. C 86, 022201 (2012) arXiv:1208.2780 [nucl-th]ADSCrossRefGoogle Scholar
  141. 141.
    R. Shyam, O. Scholten, H. Lenske, Phys. Rev. C 81, 015204 (2010) arXiv:0911.3351 [hep-ph]ADSCrossRefGoogle Scholar
  142. 142.
    G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Phys. Rev. 106, 1345 (1957)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  2. 2.Institute for Nuclear Studies and Department of PhysicsThe George Washington UniversityWashington, DCUSA
  3. 3.Thomas Jefferson National Accelerator FacilityNewport NewsUSA
  4. 4.Institute for Advanced Simulation, Institut für Kernphysik, Jülich Center for Hadron Physics and JARA HPCForschungszentrum JülichJülichGermany

Personalised recommendations