Advertisement

Differential technique for the covariant orbital angular momentum operators

  • M. Matveev
  • A. Sarantsev
  • K. Semenov-Tian-Shansky
  • A. Semenova
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract.

The orbital angular momentum operator expansion turns out to be a powerful tool to construct the fully covariant partial wave amplitudes of hadron decay reactions and hadron photo- and electroproduction processes. In this paper we consider a useful development of the orbital angular momentum operator expansion method. We present the differential technique allowing the direct calculation of convolutions of two orbital angular momentum operators with an arbitrary number of open Lorentz indices. This differential technique greatly simplifies calculations when the reaction subject to the partial wave analysis involves high spin particles in the initial and/or final states. We also present a useful generalization of the orbital angular momentum operators.

References

  1. 1.
    BESIII Collaboration (M. Ablikim et al.), Phys. Rev. Lett. 110, 252001 (2013) arXiv:1303.5949 [hep-ex]ADSCrossRefGoogle Scholar
  2. 2.
    BESIII Collaboration (M. Ablikim et al.), Phys. Rev. Lett. 111, 242001 (2013) arXiv:1309.1896 [hep-ex]CrossRefGoogle Scholar
  3. 3.
    LHCb Collaboration (R. Aaij et al.), Phys. Rev. D 92, 011102 (2015) arXiv:1504.06339 [hep-ex]ADSCrossRefGoogle Scholar
  4. 4.
    LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 115, 072001 (2015) arXiv:1507.03414 [hep-ex]ADSCrossRefGoogle Scholar
  5. 5.
    M. Karliner, J.L. Rosner, T. Skwarnicki, arXiv:1711.10626 [hep-ph]Google Scholar
  6. 6.
    R.H. Dalitz, S.F. Tuan, Phys. Rev. Lett. 2, 425 (1959)ADSCrossRefGoogle Scholar
  7. 7.
    D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 725, 181 (2003) arXiv:nucl-th/0303062ADSCrossRefGoogle Scholar
  8. 8.
    M. Mai, U.G. Meissner, Nucl. Phys. A 900, 51 (2013) arXiv:1202.2030 [nucl-th]ADSCrossRefGoogle Scholar
  9. 9.
    D. Diakonov, V. Petrov, M.V. Polyakov, Z. Phys. A 359, 305 (1997) arXiv:hep-ph/9703373ADSCrossRefGoogle Scholar
  10. 10.
    M. Danilov, R. Mizuk, Phys. At. Nucl. 71, 605 (2008) arXiv:0704.3531 [hep-ex]CrossRefGoogle Scholar
  11. 11.
    V. Kuznetsov et al., JETP Lett. 105, 625 (2017) arXiv:1703.07425 [nucl-ex]ADSCrossRefGoogle Scholar
  12. 12.
    C. Zemach, Phys. Rev. 140, B97 (1965)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M.D. Scadron, Phys. Rev. 165, 1640 (1968)ADSCrossRefGoogle Scholar
  14. 14.
    V. de Alfaro, S. Fubini, G. Furlan, C. Rossetti, Currents in Hadron Physics (North-Holland, Amsterdam, 1973)Google Scholar
  15. 15.
    S.U. Chung, Spin Formalisms, CERN-71-08Google Scholar
  16. 16.
    B.S. Zou, D.V. Bugg, Eur. Phys. J. A 16, 537 (2003) arXiv:hep-ph/0211457ADSCrossRefGoogle Scholar
  17. 17.
    A.V. Anisovich, V.V. Anisovich, V.N. Markov, M.A. Matveev, A.V. Sarantsev, J. Phys. G 28, 15 (2002) arXiv:hep-ph/0105330ADSCrossRefGoogle Scholar
  18. 18.
    A. Anisovich, E. Klempt, A. Sarantsev, U. Thoma, Eur. Phys. J. A 24, 111 (2005) arXiv:hep-ph/0407211ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Anisovich, A.V. Sarantsev, Eur. Phys. J. A 30, 427 (2006) arXiv:hep-ph/0605135ADSCrossRefGoogle Scholar
  20. 20.
    K.M. Semenov-Tian-Shansky, A.V. Vereshagin, V.V. Vereshagin, Phys. Rev. D 77, 025028 (2008) arXiv:0706.3672 [hep-ph]ADSCrossRefGoogle Scholar
  21. 21.
    A.V. Anisovich, V.V. Anisovich, A.V. Sarantsev, Int. J. Mod. Phys. A 31, 1650193 (2016) arXiv:1609.07002 [hep-ph]ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Matveev
    • 1
  • A. Sarantsev
    • 1
    • 2
  • K. Semenov-Tian-Shansky
    • 1
  • A. Semenova
    • 1
  1. 1.National Research Centre “Kurchatov Institute”: Petersburg Nuclear Physics InstituteGatchinaRussia
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik der Universität BonnBonnGermany

Personalised recommendations