Advertisement

Total reaction cross section for the 11B + 58Ni system and application of a recent new reduction methodology

  • N. DeshmukhEmail author
  • J. Lubian
Regular Article - Theoretical Physics

Abstract.

The investigation is made to extract the total reaction cross section from a previous work where the elastic scattering of the tightly bound 11B on the 58Ni target was measured, at energies close to the Coulomb barrier. Total reaction cross sections were extracted from the elastic scattering analysis using the Optical Model with double-folding type potentials. We have also taken the total reaction cross section of the systems with almost the same mass range targets and different projectiles from the literature and tried to compare with our system by reducing the cross sections, for the elimination of trivial effects due to different sizes and different Coulomb barriers. In addition to that, for all the systems considered, one-channel calculations that account only for fusion have been performed to study the quantitative effect of the direct reaction channels on the total reaction cross section.

References

  1. 1.
    L.F. Canto, P.R.S. Gomes, R. Donangelo, M.S. Hussein, Phys. Rep. 424, 1 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    J.F. Liang, C. Signorini, Int. J. Mod. Phys. E 14, 1121 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Phys. Rep. 596, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    N. Keeley, R. Raabe, N. Alamanos, J.L. Sida, Prog. Part Nucl. Phys. 59, 579 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    N. Keeley, N. Alamanos, K.W. Kemper, K. Rusek, Prog. Part Nucl. Phys. 63, 396 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    K. Hagino, N. Takigawa, Prog. Theor. Phys. 128, 1061 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Rev. Mod. Phys. 86, 317 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    V. Guimarães et al., Phys. Rev. C 75, 054602 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    R. Kanungo et al., Phys. Lett. B 660, 26 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    H.B. Jeppesen et al., Phys. Lett. B 642, 449 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    N.N. Deshmukh et al., Phys. Rev. C 92, 054615 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    L.C. Chamon, D. Pereira, M.S. Hussein, M.A. Candido Ribeiro, D. Galetti, Phys. Rev. Lett. 79, 5218 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    L.C. Chamon et al., Phys. Rev. C 66, 014610 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    P.R.S. Gomes, D.R. Mendes Junior, L.F. Canto, J. Lubian, P.N. de Faria, Few-Body Syst. 57, 205 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    L.F. Canto, D.R. Mendes Junior, P.R.S. Gomes, J. Lubian, Phys. Rev. C 92, 014626 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    V. Morcelle et al., Phys. Rev. C 95, 014615 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    Shradha Dubey et al., Phys. Rev. C 89, 014610 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    N.N. Deshmukh et al., Phys. Rev. C 83, 024607 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    N.N. Deshmukh et al., AIP Conf. Proc. 1423, 122 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    S. Mukherjee et al., Eur. Phys. J. A 45, 23 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    P.R.S. Gomes et al., Phys. Lett. B 634, 356 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Bing Wang, Wei-Juan Zhao, P.R.S. Gomes, En-Guang Zhao, Shan-Gui Zhou, Phys. Rev. C 90, 034612 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Hussein, P.R.S. Gomes, J. Lubian, L.C. Chamon, Phys. Rev. C 73, 044610 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    P.R.S. Gomes, J. Lubian, I. Padron, R.M. Anjos, Phys. Rev. C 71, 017601 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    L.F. Canto, P.R.S. Gomes, J. Lubian, L.C. Chamon, E. Crema, Nucl. Phys. A 821, 51 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    L.F. Canto, P.R.S. Gomes, J. Lubian, L.C. Chamon, E. Crema, J. Phys. G: Nucl. Part. Phys. 36, 015109 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    J.M.B. Shorto et al., Phys. Lett. B 678, 77 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    A. Pakou et al., Eur. Phys. J. A 51, 55 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    N.N. Deshmukh, in Proceedings of the International Symposium on Nuclear Physics, Vol. 54 (DAE, 2009) p. 434Google Scholar
  32. 32.
    N.N. Deshmukh et al., Eur. Phys. J. A 47, 118 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    P.N. de Faria et al., Phys. Rev. C 81, 044605 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    V. Morcelle et al., Phys. Rev. C 89, 044611 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M. Mazzocco et al., Phys. Rev. C 82, 054604 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    C. Signorini et al., Eur. Phys. J. A 44, 63 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    E. Benjamim et al., Phys. Lett. B 647, 30 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    A. Barioni et al., Phys. Rev. C 80, 034617 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    K.C.C. Pires, R. Lichtenthäler, A. Lépine-Szily, V. Morcelle, Phys. Rev. C 90, 027605 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    J.J. Kolata, E.F. Aguilera, Phys. Rev. C 79, 027603 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    E.F. Aguilera et al., Phys. Rev. C 79, 021601 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    E.F. Aguilera, I. Martel, A.M. Sánchez-Benéz, L. Acosta, Phys. Rev. C 83, 021601 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    J.C. Zamora et al., Phys. Rev. C 84, 034611 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    J. Lei, J.S. Wang, S. Mukherjee, Q. Wang, R. Wada, Phys. Rev. C 86, 057603 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    X.P. Yang, G.L. Zhang, H.Q. Zhang, Phys. Rev. C 87, 014603 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    M. Dasgupta et al., Phys. Rev. C 70, 024606 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    C.S. Palshetkar et al., Phys. Rev. C 89, 024607 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    V.V. Parkar et al., Phys. Rev. C 97, 014607 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    R. Lichtenthäler et al., AIP Conf. Proc. 1139, 76 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    V. Morcelle et al., Phys. Lett. B 732, 228 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    A. Di Pietro et al., Europhys. Lett. 64, 309 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    A. Di Pietro et al., Phys. Rev. C 69, 044613 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    F.A. Souza et al., Nucl. Phys. A 821, 36 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    M. Biswas et al., Nucl. Phys. A 802, 67 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    K.O. Pfeiffer, E. Speth, K. Bethge, Nucl. Phys. A 206, 545 (1973)ADSCrossRefGoogle Scholar
  56. 56.
    M. Zadro et al., Phys. Rev. C 80, 064610 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    C. Beck, N. Keeley, A. Diaz-Torres, Phys. Rev. C 75, 054605 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    A. Lépine-Szily, R. Lichtenthäler, Nucl. Phys. A 787, 94c (2007)ADSCrossRefGoogle Scholar
  59. 59.
    F.D. Becchetti et al., Phys. Rev. C 48, 308 (1993)ADSCrossRefGoogle Scholar
  60. 60.
    M. Aygun, Acta Phys. Pol. B 45, 1875 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    M. Mazzocco et al., Phys. Rev. C 92, 024615 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    J.C. Morales-Rivera et al., EPJ Web of Conferences 117, 07027 (2016)CrossRefGoogle Scholar
  63. 63.
    P.R.S. Gomes et al., Phys. Rev. C 71, 034608 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    N.B.J. Tannous, J.F. Mateja, D.C. Wilson, L.R. Medsker, R.H. Davis, Phys. Rev. C 18, 2190 (1978)ADSCrossRefGoogle Scholar
  65. 65.
    N. Keeley et al., Nucl. Phys. A 582, 314 (1995)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INFN - Laboratori Nazionali del SudCataniaItaly
  2. 2.Instituto de FísicaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations