Advertisement

Polarization observables and T-noninvariance in the weak charged current induced electron proton scattering

Regular Article - Theoretical Physics
  • 5 Downloads

Abstract.

In this work, we have studied the total scattering cross section (\(\sigma\), differential scattering cross section (\( \mathrm{d}\sigma/\mathrm{d} Q^{2}\)) as well as the longitudinal (\( P_L(E_{e},Q^{2})\)), perpendicular (\( P_{P}(E_{e},Q^{2})\)), and transverse (\( P_{T}(E_{e},Q^{2})\)) components of the polarization of the final hadron (n, \(\Lambda\) and \(\Sigma^{0}\)) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high \( Q^{2}\) in the strangeness sector which can provide a test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.

References

  1. 1.
    V. Punjabi et al., Eur. Phys. J. A 51, 79 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    S. Pacetti et al., Phys. Rep. 550-551, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    T.D. Lee, C.N. Yang, Phys. Rev. 126, 2239 (1962)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    M.M. Block, in Symmetries in Elementary Particle Physics, edited by A. Zichichi (Academic Press, 1965)Google Scholar
  5. 5.
    M. Block, National Accelerator Laboratory 1968 Summer Study, Report B, 1-68-42, Vol. 1, p. 215Google Scholar
  6. 6.
    S.L. Adler, Nuovo Cimento 30, 1020 (1963) 32CrossRefGoogle Scholar
  7. 7.
    I.J. Ketley, Nuovo Cimento 38, 302 (1965)CrossRefGoogle Scholar
  8. 8.
    S.M. Berman, M. Veltman, Phys. Lett. 12, 275 (1964)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Fujii, Y. Yamaguchi, Prog. Theor. Phys. 33, 552 (1965)ADSCrossRefGoogle Scholar
  10. 10.
    A. Fujii, Y. Yamaguchi, Nuovo Cimento 43, 325 (1966)ADSCrossRefGoogle Scholar
  11. 11.
    F. Cannata, R. Leonardi, F. Strocchi, Phys. Rev. D 1, 191 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    M.G. Doncel, E. De Rafael, Nuovo Cimento A 4, 363 (1971)ADSCrossRefGoogle Scholar
  13. 13.
    A. De Rujula, E. De Rafael, Phys. Lett. B 32, 495 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    H. Okamura, Prog. Theor. Phys. 45, 1707 (1971)ADSCrossRefGoogle Scholar
  15. 15.
    D.D. Javannic, M.M. Block, National Accelerator Laboratory 1969 Summer Study, Vol. 0014, p. 231Google Scholar
  16. 16.
    A. Pais, Ann. Phys. 63, 361 (1971)ADSCrossRefGoogle Scholar
  17. 17.
    C.H. Llewellyn Smith, Phys. Rep. 3, 261 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    R.E. Marshak, Riazuddin, C.P. Ryan, Theory of Weak Interactions in Particle Physics (Wiley-Interscience, 1969)Google Scholar
  19. 19.
    M.M. Block et al., Phys. Rev. Lett. 12, 262 (1964)ADSCrossRefGoogle Scholar
  20. 20.
    N. Cabibbo, F. Chilton, Phys. Rev. 137, B1628 (1965)ADSCrossRefGoogle Scholar
  21. 21.
    L. Egardt, Nuovo Cimento 29, 954 (1963)CrossRefGoogle Scholar
  22. 22.
    O. Erriquez et al., Nucl. Phys. B 140, 123 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    O. Erriquez et al., Phys. Lett. B 70, 383 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    T. Eichten et al., Phys. Lett. B 40, 593 (1972)ADSCrossRefGoogle Scholar
  25. 25.
    G. Fanourakis et al., Phys. Rev. D 21, 562 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Ammosov et al., Z. Phys. C 36, 377 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    V.V. Ammosov et al., JETP Lett. 43, 716 (1986) Pisma Zh. Eksp. Teor. Fiz. 43ADSGoogle Scholar
  28. 28.
    SKAT Collaboration (J. Brunner et al.), Z. Phys. C 45, 551 (1990)CrossRefGoogle Scholar
  29. 29.
    T2K Collaboration (A. Longhin), EPJ Web of Conferences 164, 01017 (2017)CrossRefGoogle Scholar
  30. 30.
    MicroBooNE Collaboration (A. Furmanski), PoS NOW 2016, 014 (2017)Google Scholar
  31. 31.
    DUNE Collaboration (B. Abi), arXiv:1706.07081 [physics.ins-det]Google Scholar
  32. 32.
    ICARUS Collaboration (F. Varanini), EPJ Web of Conferences 164, 07017 (2017)CrossRefGoogle Scholar
  33. 33.
    K.M. Graczyk, B.E. Kowal, arXiv:1711.04868 [hep-ph]. Google Scholar
  34. 34.
    F. Akbar, M. Rafi Alam, M. Sajjad Athar, S.K. Singh, Phys. Rev. D 94, 114031 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Mod. Phys. Lett. A 19, 2815 (2004) Phys. Part. Nucl. 35ADSCrossRefGoogle Scholar
  36. 36.
    K.M. Graczyk, Nucl. Phys. Proc. Suppl. 139, 150 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    K. Hagiwara, K. Mawatari, H. Yokoya, Nucl. Phys. Proc. Suppl. 139, 140 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    K.M. Graczyk, Nucl. Phys. A 748, 313 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    S.M. Bilenky, E. Christova, J. Phys. G 40, 075004 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    S.M. Bilenky, E. Christova, Phys. Part. Nucl. Lett. 10, 651 (2013)CrossRefGoogle Scholar
  41. 41.
    M. Valverde, J.E. Amaro, J. Nieves, C. Maieron, Phys. Lett. B 642, 218 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Mod. Phys. Lett. A 19, 2919 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    T. Katori, M. Martini, J. Phys. G 45, 013001 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    J.G. Morfin, J. Nieves, J.T. Sobczyk, Adv. High Energy Phys. 2012, 934597 (2012)CrossRefGoogle Scholar
  45. 45.
    J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84, 1307 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    N. Cabibbo, Phys. Lett. 12, 137 (1964)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    S.L. Glashow, Phys. Rev. Lett. 14, 35 (1965)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    H.W. Fearing, P.C. McNamee, R.J. Oakes, Nuovo Cimento A 60, 10 (1969)ADSCrossRefGoogle Scholar
  49. 49.
    W.Y.P. Hwang, E.M. Henley, Phys. Rev. D 38, 798 (1988)ADSCrossRefGoogle Scholar
  50. 50.
    S.L. Mintz, J. Phys. G 30, 565 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    S.L. Mintz, M.A. Barnett, Phys. Rev. D 66, 117501 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    S.L. Mintz, Nucl. Phys. A 690, 711 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    F. Akbar, M. Sajjad Athar, A. Fatima, S.K. Singh, Eur. Phys. J. A 53, 154 (2017)ADSCrossRefGoogle Scholar
  54. 54.
  55. 55.
  56. 56.
    N. Cabibbo, E.C. Swallow, R. Winston, Annu. Rev. Nucl. Part. Sci. 53, 39 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    S. Weinberg, Phys. Rev. 112, 1375 (1958)ADSCrossRefGoogle Scholar
  58. 58.
    M.L. Goldberger, S.B. Treiman, Phys. Rev. 111, 354 (1958)ADSCrossRefGoogle Scholar
  59. 59.
    Y. Nambu, Phys. Rev. Lett. 4, 380 (1960)ADSCrossRefGoogle Scholar
  60. 60.
    H. Ohtsubo, A. Fujii, Nuovo Cimento A 42, 109 (1966)ADSCrossRefGoogle Scholar
  61. 61.
    L.A. Ahrens et al., Phys. Lett. B 202, 284 (1988)ADSCrossRefGoogle Scholar
  62. 62.
    B.R. Holstein, in Hyperon 99, Proceedings of the Hyperon Physics Symposium Fermilab, Sept. 27--29, 1999, edited by D.A. Jensen, E. Monnier, Fermilab rep. FERMILAB-Conf-00/059-E (2000)Google Scholar
  63. 63.
    R. Bradford et al., Nucl. Phys. Proc. Suppl. 159, 127 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    V. Bernard, L. Elouadrhiri, U.G. Meissner, J. Phys. G 28, R1 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    R. Oehme, R. Winston, A. Garcia, Phys. Rev. D 3, 1618 (1971)ADSCrossRefGoogle Scholar
  66. 66.
    S.M. Bilenky, Basics of Introduction to Feynman Diagrams and Electroweak Interactions Physics (Editions Frontières, 1994)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations