Advertisement

The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

  • Israel Mardor
  • Ofer Aviv
  • Marilena Avrigeanu
  • Dan Berkovits
  • Adi Dahan
  • Timo Dickel
  • Ilan Eliyahu
  • Moshe Gai
  • Inbal Gavish-Segev
  • Shlomi Halfon
  • Michael Hass
  • Tsviki Hirsh
  • Boaz Kaiser
  • Daniel Kijel
  • Arik Kreisel
  • Yonatan Mishnayot
  • Ish Mukul
  • Ben Ohayon
  • Michael Paul
  • Amichay Perry
  • Hitesh Rahangdale
  • Jacob Rodnizki
  • Guy Ron
  • Revital Sasson-Zukran
  • Asher Shor
  • Ido Silverman
  • Moshe Tessler
  • Sergey Vaintraub
  • Leo Weissman
Review

Abstract.

The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (\(5 \times 10^{10}\) epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

References

  1. 1.
    N. Pichoff, in Proceedings of the International Particle Accelerator Conference IPAC2017 (JACoW, 2017) pp. 2194--2196Google Scholar
  2. 2.
    D. Berkovits, Operational experience and future goals of the SARAF proton/deuteron linac, in Proceedings of LINAC12, Tel-Aviv (JACoW, 2012) pp. 100--104Google Scholar
  3. 3.
    L. Weissman et al., J. Instrum. 10, T10004 (2015)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    A. Shor, L. Weissman, J. Instrum. 11, T07001 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Shor et al., J. Instrum. 7, C06003 (2012)CrossRefGoogle Scholar
  7. 7.
    B. Kaizer, Fast beam chopper at SARAF accelerator via RF deflector before RFQ, in Proceedings of the 27th Conference of the Israel Nuclear Societies, February 11–13, Dead-Sea (IAEA, 2014) p. 133, http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/45/114/45114733.pdf?r=1
  8. 8.
  9. 9.
    J. Rodnizki, SARAF 4-Rod RFQ RF power line splitting design and test, in Proceedings of LINAC2016, East Lansing, MI (JACoW, 2016) pp. 693--697Google Scholar
  10. 10.
    J. Dumas, in Proceedings of the International Particle Accelerator Conference IPAC2017 (JACoW, 2017) pp. 655--658Google Scholar
  11. 11.
    J. Cornell, Final report of the EURISOL Design Study (2005-2009). A Design Study for a European Isotope-Separation-On-Line Radioactive Ion Beam Facility (GANIL, 2009) pp. 1--220 http://hal.in2p3.fr/in2p3-00462950
  12. 12.
    Zhi-Jun Wang et al., Phys. Rev. Accel. Beams 19, 120101 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Knaster et al., Nucl. Fusion 57, 102016 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    A. Shemyakin, Project X injector experiment: Goals, plan, and status, in Proceedings of IPAC2013, Shanghai (JACoW, 2013) pp. 1093--1095Google Scholar
  15. 15.
    J. Holzbauer, Design of a Beta=0.29 half-wave resonator for the FRIB Driver Linac, in Proceedings of 2011 Particle Accelerator Conference, New York (2011) pp. 997--999Google Scholar
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    M.S. Avilov et al., Nucl. Instrum. Methods A 618, 1 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    F. Pellemoine et al., Nucl. Instrum. Methods A 655, 3 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    E. Surrey et al., Fusion Eng. Des. 89, 2108 (2014)CrossRefGoogle Scholar
  22. 22.
    T. Rinckel et al., Phys. Proc. 26, 168 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    T. Rinckel et al., Phys. Proc. 26, 161 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    P. Mastinu et al., Phys. Proc. 26, 261 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Terrón et al., Nucl. Instrum. Methods A 724, 34 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    B. Phoenix et al., Appl. Radiat. Isot. 106, 49 (2015)CrossRefGoogle Scholar
  27. 27.
    D. Petrich et al., Nucl. Instrum. Methods A 596, 269 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    J.A. Nolen et al., Nucl. Instrum. Methods B 204, 298 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    S. Halfon, First demonstration of high-power proton irradiation and neutron production with a liquid-lithium target, in 27th Conference of the Nuclear Societies in Israel (2014)Google Scholar
  30. 30.
    S. Halfon et al., Rev. Sci. Instrum. 85, 056105 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    S. Halfon et al., Appl. Radiat. Isot. 88, 238 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Kondo et al., Fusion Eng. Des. 109-111, 1759 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Tessler et al., Phys. Lett. B 751, 418 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    M. Friedman et al., Nucl. Instrum. Methods A 698, 117 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    S. Halfon et al., Rev. Sci. Instrum. 84, 123507 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    A. Kreisel, SimSARAF -- A simulation code for neutron generation at SARAF, Soreq NRC Report 4351 (2012)Google Scholar
  37. 37.
    T.Y. Hirsh, Production of ${}^{8}$Li and ${}^{6}$He radioactive beams in high current deuteron accelerators, PhD Thesis, Weizmann Institute of Science, Rehovot, Israel (2012), https://lib-phds1.weizmann.ac.il/Dissertations/HIRSH_TSVIKIY_2013.pdf
  38. 38.
    M. Hagiwara et al., Fusion Sci. Technol. 48, 1320 (2005)CrossRefGoogle Scholar
  39. 39.
    S. Halfon et al., AIP Conf. Proc. 1525, 511 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Momozaki, Thermal design analysis for liquid metal windowless targets, in Third High-Power Targetry Workshop, Bad Zurzach, Switzerland, September 2007 (2008)Google Scholar
  41. 41.
    X. Liu, J.H. Lienhard, J. Heat Transf. 115, 472 (1993)CrossRefGoogle Scholar
  42. 42.
    B.W. Blackburn et al., Med. Phys. 25, 1967 (1998)CrossRefGoogle Scholar
  43. 43.
    J.H. Lienhard, Liquid jet impingement, in Annual Review of Heat Transfer, Vol. 6, edited by C.L. Tien (Begell House, 1995) Chapt. 4, pp. 199--270Google Scholar
  44. 44.
    B.W. Blackburn, High-power target development for accelerator-based neutron capture therapy, PhD Thesis, MIT (2002)Google Scholar
  45. 45.
    J.M. Carpenter, Phys. Proc. 26, 132 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    I. Silverman et al., Int. J. Heat Mass Transf. 49, 2782 (2006)CrossRefGoogle Scholar
  47. 47.
    I. Silverman et al., Nucl. Instrum. Methods B 261, 747 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    J.S. Wilson et al., Appl. Radiat. Isot. 66, 565 (2008)CrossRefGoogle Scholar
  49. 49.
    S. Haroush et al., Mater. Des. 83, 75 (2015)CrossRefGoogle Scholar
  50. 50.
    I. Silverman et al., Nucl. Instrum. Methods B 241, 1009 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    I. Silverman, SS316L as window for production target for Ge-68, in 11th International Topical Meeting on Nuclear Applications of Accelerators, AccApp 2013 (Curran Associates, Red Hook, NY, USA, 2013) pp. 226--230Google Scholar
  52. 52.
    S. Haroush et al., Materials 10, 491 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    E. Barami et al., Magnetohydrodynamics 53, 201 (2017)Google Scholar
  54. 54.
    H. Hirshfeld et al., Nucl. Instrum. Methods A 562, 903 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    I. Gavish-Segev et al., J. Nucl. Mater. 496, 77 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    P. Franzen et al., J. Nucl. Mater. 241-243, 1082 (1997)ADSCrossRefGoogle Scholar
  57. 57.
    A. Arenstam et al., J. Instrum. 8, T07004 (2013)CrossRefGoogle Scholar
  58. 58.
    A. Arenstam et al., J. Instrum. 13, T01008 (2018)CrossRefGoogle Scholar
  59. 59.
    R. Frauenfelder, J. Vacuum Sci. Technol. 6, 388 (1969)ADSCrossRefGoogle Scholar
  60. 60.
    W. Ratynski, F. Käppeler, Phys. Rev. C 37, 595 (1988)ADSCrossRefGoogle Scholar
  61. 61.
    G. Feinberg et al., Phys. Rev. C 85, 055810 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    M. Tessler et al., PoS INPC2016, 139 (2017)Google Scholar
  63. 63.
    L. Weissman et al., Phys. Rev. C 96, 015802 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    A. Shor et al., Phys. Rev. C 96, 055805 (2017)CrossRefGoogle Scholar
  65. 65.
    M. Paul, in preparationGoogle Scholar
  66. 66.
    B.D. Fields, Annu. Rev. Nucl. Part. Sci. 61, 47 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    M. Gai, Implanted ${}^{7}$Be Targets for the study of neutron interactions with ${}^{7}$Be (The "Primordial 7Li Problem"), Proposal to the ISOLDE and Neutron Time-of-Flight Committee, June 2014 https://indico.cern.ch/event/325420/contributions/1709920/attachments/631290/868765/Gai_INTC2014.pdf
  68. 68.
    E.A. Maugeri et al., J. Instrum. 12, P02016 (2017)CrossRefGoogle Scholar
  69. 69.
    E.E. Kading, Toward measurements of neutron interactions with ${}^{7}$Be and the primordial ${}^{7}$Li problem, in CHANDA Workshop, PSI Switzerland, November 2015 (2016) https://indico.psi.ch/getFile.py/access?resId=9&materialId=5&confId=3671
  70. 70.
    M. Barbagallo et al., Phys. Rev. Lett. 117, 152701 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    M. Gai, High resolution study of neutron interactions with ${}^{7}$Be (The "Primordial ${}^{7}$Li Problem"), Proposal to the ISOLDE and Neutron Time-of-Flight Committee, May 2017 https://cds.cern.ch/record/2266904/files/INTC-I-203.pdf
  72. 72.
    T. Stora et al., EPL 98, 32001 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    I. Mukul et al., Nucl. Instrum. Methods A 899, 16 (2018) arXiv:1711.08299v1ADSCrossRefGoogle Scholar
  74. 74.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  75. 75.
    J.R. Penning, F.H. Schmidt, Phys. Rev. 105, 647 (1957)ADSCrossRefGoogle Scholar
  76. 76.
    T.A. Carlson, Phys. Rev. 132, 2239 (1963)ADSCrossRefGoogle Scholar
  77. 77.
    R. Moreh et al., Nucl. Phys. A 107, 236 (1968)ADSCrossRefGoogle Scholar
  78. 78.
    D.E. Alburger et al., Phys. Rev. C 9, 991 (1974)ADSCrossRefGoogle Scholar
  79. 79.
    R.B. Firestone, Nucl. Data Sheets 108, 1 (2007)ADSCrossRefGoogle Scholar
  80. 80.
    A.T. Laffoley et al., Phys. Rev. C 92, 025502 (2015)ADSCrossRefGoogle Scholar
  81. 81.
    B. Pfeiffer et al., At. Data Nucl. Data Tables 100, 403 (2014)ADSCrossRefGoogle Scholar
  82. 82.
    T.Y. Hirsh et al., J. Phys. Conf. Ser. 337, 012010 (2012)CrossRefGoogle Scholar
  83. 83.
    M.F. L’Annunziata, Liquid scintillation analysis: Principles and practice, in Handbook of Radioactivity Analysis (Second Edition), edited by M.F. L’Annunziata (Academic Press, San Diego, CA, 2004) pp. 347--535Google Scholar
  84. 84.
    P. Sauvan et al., J. Kor. Phys. Soc. 59, 1195 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    G. Dietze, H. Klein, NRESP4 and NEFF4 Tech. Rep., Physikalisch-Technische Bundesansalt, PTB-ND-22 (1982)Google Scholar
  86. 86.
    M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    L. Weissman et al., Nucl. Instrum. Methods B 342, 7 (2015)ADSCrossRefGoogle Scholar
  88. 88.
    E. Simeckova et al., Phys. Rev. C 84, 014605 (2011)ADSCrossRefGoogle Scholar
  89. 89.
    V. Avrigeanu, M. Avrigeanu, Phys. Rev. C 94, 024621 (2016)ADSCrossRefGoogle Scholar
  90. 90.
    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  91. 91.
    L. Crespo Campo et al., Phys. Rev. C 96, 014312 (2017)ADSCrossRefGoogle Scholar
  92. 92.
    L.J. Gilly et al., Phys. Rev. 131, 1727 (1963)ADSCrossRefGoogle Scholar
  93. 93.
    C.B. Fulmer, I.R. Williams, Nucl. Phys. A 155, 40 (1970)ADSCrossRefGoogle Scholar
  94. 94.
    H. Okamura, S. Tamagawa, Nucl. Phys. A 169, 401 (1971)ADSCrossRefGoogle Scholar
  95. 95.
    F.W. Pement, R.L. Wolke, Nucl. Phys. A 86, 429 (1966)CrossRefGoogle Scholar
  96. 96.
    S. Takács et al., Nucl. Instrum. Methods B 174, 235 (2001)ADSCrossRefGoogle Scholar
  97. 97.
    P. Bem, The activation of Cu and Al by deuterons at energies up to 20 MeV, in Proceedings of the International Conference on Nuclear Data for Science and Technology (ND2007), Nice, France, 2007 (EDP Sciences, 2008) pp. 1003--1006Google Scholar
  98. 98.
    T.Y. Hirsh et al., Nucl. Instrum. Methods B 362, 29 (2015)ADSCrossRefGoogle Scholar
  99. 99.
    A. Kreisel, Deuterons on vanadium and cobalt targets cross sections measurements in the 2.7--5.5 MeV energy range, in preparationGoogle Scholar
  100. 100.
    G.S. Was, Fundamentals of Radiation Materials Science - Metals and Alloys (Springer, 2007)Google Scholar
  101. 101.
    W. Moller, Nucl. Instrum. Methods 209, 773 (1983)CrossRefGoogle Scholar
  102. 102.
    T. Tanabe, Phys. Scr. T159, 014044 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    A.A. Haasz et al., J. Nucl. Mater. 258-263, 889 (1998)ADSCrossRefGoogle Scholar
  104. 104.
    A.A. Haasz, J.W. Davis, J. Nucl. Mater. 241-243, 1076 (1997)ADSCrossRefGoogle Scholar
  105. 105.
    V.Kh. Alimov, B.M.U. Scherzer, J. Nucl. Mater. 240, 75 (1996)ADSCrossRefGoogle Scholar
  106. 106.
    V.Kh. Alimov, Deuterium Retention in Tungsten and Tungsten Carbides Irradiated With D Ions, (Springer Netherlands, Dordrecht, 2002) pp. 131--144Google Scholar
  107. 107.
    W. Wang et al., J. Nucl. Mater. 299, 124 (2001)ADSCrossRefGoogle Scholar
  108. 108.
    V.T. Astrelin et al., J. Nucl. Mater. 396, 43 (2010)ADSCrossRefGoogle Scholar
  109. 109.
    I. Eliyahu et al., Nucl. Instrum. Methods B 349, 209 (2015)ADSCrossRefGoogle Scholar
  110. 110.
    I. Eliyahu, Use of CR-39 Plastic Dosimeters for Beam Ion Halo Measurements, in Proceedings of The International Beam Instrumentation Conference (IBIC2016), Barcelona, Spain, (JACoW, 2017)Google Scholar
  111. 111.
    D. Ridikas, Internal Report DSM/DAPNIA/SPhN, CEA Saclay (2003)Google Scholar
  112. 112.
    R. Catherall et al., J. Phys. G: Nucl. Part. Phys. 44, 094002 (2017)ADSCrossRefGoogle Scholar
  113. 113.
    R. Reifarth et al., J. Phys. G: Nucl. Part. Phys. 41, 053101 (2014)ADSCrossRefGoogle Scholar
  114. 114.
    B. Oginni et al., Phys. Rev. C 83, 025802 (2011)ADSCrossRefGoogle Scholar
  115. 115.
    R. Diehl et al., Nature 439, 45 (2006)ADSCrossRefGoogle Scholar
  116. 116.
    M. Arnould et al., Phys. Rep. 450, 97 (2007)ADSCrossRefGoogle Scholar
  117. 117.
    L. Weissman, M. Paul, Neutron-rich radioactive-ion production at SARAF phase-II, SNRC internal report, Soreq Nuclear Research Center, October 2013Google Scholar
  118. 118.
    D. Gorelov et al., Nucl. Instrum. Methods B 376, 46 (2016)ADSCrossRefGoogle Scholar
  119. 119.
    W.R. Plass et al., Nucl. Instrum. Methods B 317, 457 (2013)ADSCrossRefGoogle Scholar
  120. 120.
    T. Dickel et al., Nucl. Instrum. Methods B 376, 216 (2016)ADSCrossRefGoogle Scholar
  121. 121.
    SRIM2013, www.srim.org
  122. 122.
    M. Wada et al., Nucl. Instrum. Methods B 204, 570 (2003)ADSCrossRefGoogle Scholar
  123. 123.
    M. Ranjan et al., Nucl. Instrum. Methods A 770, 87 (2015)ADSCrossRefGoogle Scholar
  124. 124.
    S. Purushothaman et al., EPL 104, 42001 (2013)ADSCrossRefGoogle Scholar
  125. 125.
    E. Haettner et al., Nucl. Instrum. Methods A 880, 138 (2018)ADSCrossRefGoogle Scholar
  126. 126.
    T. Dickel et al., Nucl. Instrum. Methods A 777, 172 (2015)ADSCrossRefGoogle Scholar
  127. 127.
    D. Stresau, A new class of robust sub-nanosecond TOF detectors with high dynamic range, in 54th ASMS Conference on Mass Spectroscopy, Seattle, Washington, (ASMS: American Society for Mass Spectrometry, 2006) http://www.cromlab.es/Articulos/SGE/ETP/TA/TA-0129-A.pdf
  128. 128.
    T. Dickel et al., Phys. Lett. B 744, 137 (2015)ADSCrossRefGoogle Scholar
  129. 129.
    W.A. Peters et al., Nucl. Instrum. Methods A 836, 122 (2016)ADSCrossRefGoogle Scholar
  130. 130.
    A.R. Dicker et al., Hyperfine Interact. 227, 139 (2014)ADSCrossRefGoogle Scholar
  131. 131.
    S. Kahn et al., Nucl. Sci. Eng. 23, 8 (1965)CrossRefGoogle Scholar
  132. 132.
    J. Katakura, JENDL FP Decay Data File 2011 and Fission Yields Data File 2011, JAEA-Data/Code 2011-025 (Mar. 2012) http://www.ndc.jaea.go.jp/cgi-bin/FPYfig?iso=nU238&eng=e2
  133. 133.
    Live Chart of Nuclides, IAEA -- Nuclear Data Section, https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
  134. 134.
    T. Dickel et al., J. Am. Soc. Mass Spectrom. 28, 1079 (2017)ADSCrossRefGoogle Scholar
  135. 135.
    T. Dickel et al., Int. J. Mass Spectrom. 412, 1 (2017)CrossRefGoogle Scholar
  136. 136.
    S. Ayet San Andres, Developments for multiple-reflection time-of-flight mass spectrometers and their applications to high precision mass measurements of exotic nuclei, PhD Thesis, Justus-Liebig-Universität, Gießen, Germany, in preparationGoogle Scholar
  137. 137.
    T. Dickel, Design and commissioning of an ultra-high-resolution time-of-flight based isobar separator and mass spectrometer, PhD Thesis, Justus-Liebig-Universität, Gießen, Germany (2010)Google Scholar
  138. 138.
    Facility for Rare Isotope Beams at Michigan State University, https://frib.msu.edu/
  139. 139.
    FRIB Estimated Rates Version 1.08 (2017) https://groups.nscl.msu.edu/frib/rates/fribrates.html
  140. 140.
    O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods B 266, 4657 (2008)ADSCrossRefGoogle Scholar
  141. 141.
    O.B. Tarasov, LISE++ development: Abrasion-fission, Tech. Rep. MSUCL1300, NSCL, Michigan State University 2005Google Scholar
  142. 142.
    C. Iliadis, Nuclear Physics of Stars, Second, Revised and Enlarged Edition (Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 2015)Google Scholar
  143. 143.
    J.M. Pearson et al., Phys. Lett. B 387, 455 (1996)ADSCrossRefGoogle Scholar
  144. 144.
    M.R. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016)ADSCrossRefGoogle Scholar
  145. 145.
    J.L. Tain et al., JPS Conf. Proc. 14, 010607 (2017)Google Scholar
  146. 146.
    O. Naviliat-Cuncic, M. González-Alonso, Ann. Phys. 525, 600 (2013)CrossRefGoogle Scholar
  147. 147.
    J.D. Jackson et al., Phys. Rev. 106, 517 (1957)ADSCrossRefGoogle Scholar
  148. 148.
    M. Hass et al., J. Phys. G: Nucl. Part. Phys. 35, 014042 (2008)ADSCrossRefGoogle Scholar
  149. 149.
    T.Y. Hirsh et al., PoS Nufact08, 090 (2008)Google Scholar
  150. 150.
    D. Zajfman et al., Phys. Rev. A 55, R1577 (1997)ADSCrossRefGoogle Scholar
  151. 151.
    E.L. Raab et al., Phys. Rev. Lett. 59, 2631 (1987)ADSCrossRefGoogle Scholar
  152. 152.
    O. Aviv et al., J. Phys.: Conf. Ser. 337, 012020 (2012)Google Scholar
  153. 153.
    N. Severijns, J. Phys. G: Nucl. Part. Phys. 41, 114006 (2014)ADSCrossRefGoogle Scholar
  154. 154.
    Dreebit - Ion Beam Technology, http://www.dreebit-ibt
  155. 155.
    S. Vaintraub et al., Nucl. Instrum. Methods A 777, 36 (2015)ADSCrossRefGoogle Scholar
  156. 156.
    M. Gonzalez-Alonso, O. Naviliat-Cuncic, Phys. Rev. C 94, 035503 (2016)ADSCrossRefGoogle Scholar
  157. 157.
    J.C. Hardy, I.S. Towner, Phys. Rev. C 91, 025501 (2015)ADSCrossRefGoogle Scholar
  158. 158.
    E.G. Adelberger et al., Phys. Rev. C 27, 2833 (1983)ADSCrossRefGoogle Scholar
  159. 159.
    O. Naviliat-Cuncic, N. Severins, Phys. Rev. Lett. 102, 142302 (2009)ADSCrossRefGoogle Scholar
  160. 160.
    B.R. Holstein, S.B. Treiman, Phys. Rev. D 16, 2369 (1977)ADSCrossRefGoogle Scholar
  161. 161.
    O. Naviliat-Cuncic et al., J. Phys. G: Nucl. Part. Phys. 17, 919 (1991)ADSCrossRefGoogle Scholar
  162. 162.
    B. Ohayon et al., J. Phys. B: At. Mol. Opt. Phys. 50, 055401 (2017)ADSCrossRefGoogle Scholar
  163. 163.
    T. Feldker et al., Eur. Phys. J. D 65, 257 (2011)ADSCrossRefGoogle Scholar
  164. 164.
    W.W. Macalpine, R.O. Schildknecht, Proc. IRE 47, 2099 (1959)CrossRefGoogle Scholar
  165. 165.
    B. Ohayon et al., J. Instrum. 10, P03009 (2015)CrossRefGoogle Scholar
  166. 166.
    W. Vassen et al., Rev. Mod. Phys. 84, 175 (2012)ADSCrossRefGoogle Scholar
  167. 167.
    M.D. Hoogerland et al., Appl. Phys. B 62, 323 (1996)ADSCrossRefGoogle Scholar
  168. 168.
    R.D. Glover, T. Bastin, J. Opt. Soc. Am. B 32, B1 (2015)CrossRefGoogle Scholar
  169. 169.
    V. Natarajan, Modern Atomic Physics (CRC Press, Taylor & Francis Group LLC, 2015)Google Scholar
  170. 170.
    B. Ohayon, G. Ron, J. Instrum. 8, P02016 (2013)CrossRefGoogle Scholar
  171. 171.
    B. Ohayon, G. Ron, Rev. Sci. Instrum. 86, 103110 (2015)ADSCrossRefGoogle Scholar
  172. 172.
    M. Zinner et al., Phys. Rev. A 67, 010501(R) (2003)ADSCrossRefGoogle Scholar
  173. 173.
    N.D. Scielzo et al., Phys. Rev. Lett. 93, 102501 (2004)ADSCrossRefGoogle Scholar
  174. 174.
    P.A. Vetter et al., Phys. Rev. C 77, 035502 (2008)ADSCrossRefGoogle Scholar
  175. 175.
    P. Navrátil et al., Phys. Scr. 91, 053002 (2016)ADSCrossRefGoogle Scholar
  176. 176.
    Y.H. Zhang et al., Phys. Scr. 91, 073002 (2016)ADSCrossRefGoogle Scholar
  177. 177.
    S. Kreim et al., Int. J. Mass Spectrom. 349-350, 63 (2013)CrossRefGoogle Scholar
  178. 178.
    M.R. Mumpower et al., Phys. Rev. C 94, 064317 (2016)ADSCrossRefGoogle Scholar
  179. 179.
    A.H. Couture et al., Phys. Rev. C 85, 054004 (2012)ADSCrossRefGoogle Scholar
  180. 180.
    M.A. Al-Ohali et al., Phys. Rev. C 86, 034603 (2012)ADSCrossRefGoogle Scholar
  181. 181.
    M. Bhike, Phys. Lett. B 741, 150 (2015)ADSCrossRefGoogle Scholar
  182. 182.
    S.V. Begun, Determination of the cross sections of $(n,2n)$, $(n,gamma)$ nuclear reactions on germanium isotopes at the energy of neutrons 13.96 MeV, arXiv:nucl-ex/0701039v1 (2007)Google Scholar
  183. 183.
    S. MacMullin et al., Phys. Rev. C 87, 054613 (2013)ADSCrossRefGoogle Scholar
  184. 184.
    C. Bhatia et al., Phys. Rev. C 87, 011601(R) (2013)ADSCrossRefGoogle Scholar
  185. 185.
    V.E. Guiseppe et al., Phys. Rev. C 79, 054604 (2009)ADSCrossRefGoogle Scholar
  186. 186.
    M. Gilberti et al., Sci. Technol. Nucl. Install. 2015, 104739 (2015)CrossRefGoogle Scholar
  187. 187.
    R.L. Macklin, Astrophys. Space Sci. 115, 71 (1985)ADSCrossRefGoogle Scholar
  188. 188.
    S. Nakamura et al., J. Nucl. Sci. Technol. 44, 21 (2007)CrossRefGoogle Scholar
  189. 189.
    S. Chiba et al., Nature 7, 13961 (2017)Google Scholar
  190. 190.
    P. Dimitriou, Fission products yields data -- Current status and perspectives, IAEA INDC (NDS)-0713 (2016)Google Scholar
  191. 191.
    A.A. Sonzogni et al., Phys. Rev. Lett. 116, 132502 (2016)ADSCrossRefGoogle Scholar
  192. 192.
    V.A. Apse et al., Phys. At. Nucl. 79, 1513 (2016)CrossRefGoogle Scholar
  193. 193.
    S.Q. Yan et al., Phys. Rev. C 94, 015804 (2016)ADSCrossRefGoogle Scholar
  194. 194.
    E. Rabaglino, Helium and tritium in neutron irradiated beryllium, FZKA 6939, Karlsruhe (2004)Google Scholar
  195. 195.
    A.J. Koning, Talys-1.0, in Proceedings of the International Conference on Nuclear Data for Science and Technology (ND2007), Nice, France (2007) pp. 211--214Google Scholar
  196. 196.
    T. Aoki et al., Nucl. Sci. Technol. 41, 399 (2004)CrossRefGoogle Scholar
  197. 197.
    K. Lavie, Design of a thermal neutron radiography camera based on SARAF accelerator, in 22nd Conference of the Nuclear Societies in Israel, Dead-Sea, Israel, February 2004 (2005) http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/35/066/35066130.pdf?r=1
  198. 198.
    K. Lavie, Design of a compact thermal neutron source and a collimator for a radiography camera based on SARAF accelerator, Master’s Thesis, Ben-Gurion University of the Negev (2005)Google Scholar
  199. 199.
    MCNP version 4b, Monte Carlo N-Particle Transport Code System, Los Alamos National Laboratory, Los Alamos, NM (1997)Google Scholar
  200. 200.
    I. Sabo-Napadensky et al., J. Instrum. 7, C06005 (2012)CrossRefGoogle Scholar
  201. 201.
    T. Blue, J. Yanch, J. Neuro-Oncol. 62, 19 (2003)Google Scholar
  202. 202.
    W.A.G. Sauerwein (Editors), Neutron Capture Therapy: Principles and Applications (Springer-Verlag, 2012)Google Scholar
  203. 203.
    C.L. Lee, X.-L. Zhou, Nucl. Instrum. Methods B 152, 1 (1999)ADSCrossRefGoogle Scholar
  204. 204.
    V. Aleynik et al., Appl. Radiat. Isot. 69, 1635 (2011)CrossRefGoogle Scholar
  205. 205.
    A.A. Burlon et al., Appl. Radiat. Isot. 61, 811 (2004)CrossRefGoogle Scholar
  206. 206.
    C. Willis, High-power lithium target for accelerator-based BNCT, in Proceedings of the 24th Linear Accelerator Conference, LINAC08, Victoria, BC, Canada, September-October 2008, MOP063 (2008)Google Scholar
  207. 207.
    S. Halfon et al., Appl. Radiat. Isot. 106, 57 (2015)CrossRefGoogle Scholar
  208. 208.
    National Research Council (US) Committee on Medical Isotope Production without Highly Enriched Uranium, Medical Isotope Production without Highly Enriched Uranium (National Academies Press (US), Washington DC, 2009)Google Scholar
  209. 209.
    J. Tollefson, Reactor shutdown threatens world’s medical-isotope supply, Nature, 12 Sept. 2016Google Scholar
  210. 210.
    F. Azaiez, Nuclear Physics for Medicine (NuPECC, 2014)Google Scholar
  211. 211.
    D.F. Geesaman, Isotopes for the Nation’s Future -- A Long Range Plan, NSAC Isotopes Subcommittee (2009)Google Scholar
  212. 212.
    A. Hermanne et al., Nucl. Instrum. Methods B 247, 223 (2006)ADSCrossRefGoogle Scholar
  213. 213.
    O. Roig et al., Phys. Rev. C 93, 034602 (2016)ADSCrossRefGoogle Scholar
  214. 214.
    S. Mirzadeh et al., J. Nucl. Med. 37, 728 (1996)Google Scholar
  215. 215.
    G.P. da Silva, J.A. Osso Junior, Study of the production of ${}^{177}$Lu through ^176Yb$(n,gamma)$^177Yb ${}^{177}$Lu nuclear reaction, in International Nuclear Atlantic Conference, Sao Paulo, Brazil, October 2007 (Elsevier, 2010)Google Scholar
  216. 216.
    K. Hashimoto et al., J. Radioanal. Nucl. Chem. 255, 575 (2003)CrossRefGoogle Scholar
  217. 217.
    D.G. Medvedev et al., Appl. Radiat. Isotop. 66, 1300 (2008)CrossRefGoogle Scholar
  218. 218.
    E. Lavie, Method and system for production of radioisotopes, and radioisotopes produced thereby, US Patent 2007/0297554 A1, 2007Google Scholar
  219. 219.
    A. Hermanne et al., Nucl. Instrum. Methods B 187, 3 (2002)ADSCrossRefGoogle Scholar
  220. 220.
    M. Vorster, Semin. Nucl. Med. 46, 436 (2016)CrossRefGoogle Scholar
  221. 221.
    S. Takacs et al., Nucl. Instrum. Methods B 211, 169 (2003)ADSCrossRefGoogle Scholar
  222. 222.
    V.N. Levkovskij, Activation cross section nuclides of average masses ($A=40-100$) by proton and alpha-particles with average energies ($E=10-50$), in Activation Cross Section by Protons and Alphas (Inter-vesi., Moscow, 1991)Google Scholar
  223. 223.
    B.L. Cohen et al., Phys. Rev. 99, 723 (1955)ADSCrossRefGoogle Scholar
  224. 224.
    A.A. Arzumanov, Technique for irradiation of Nb-Ga targets at Kazakhstan isochronous cyclotron, in 17th International Conference on Cyclotrons and Their Applications (Tokyo, Japan, October 2004), (JACoW, 2005) p. 28Google Scholar
  225. 225.
    F.M. Nortier, Large-scale isotope production with an intense 100 MeV proton beam: recent target performance experience, in Cyclotrons and Their Applications (JACoW, 2008)Google Scholar
  226. 226.
    S. Halfon, Ge-68 production target using 30 MeV 1 mA protons at SARAF, in Tenth International Topical Meeting on Nuclear Applications of Accelerators (AccApp11), Knoxville, TN, April 2011,(Curran Associates, Red Hook, NY, USA, 2013)Google Scholar
  227. 227.
    M. Miederer et al., Adv. Drug Deliv. Rev. 60, 1371 (2008)CrossRefGoogle Scholar
  228. 228.
    T.K. Nikula et al., J. Nucl. Med. 40, 166 (1999)Google Scholar
  229. 229.
    S. Sofou et al., Bioconjugate Chem. 18, 2061 (2007)CrossRefGoogle Scholar
  230. 230.
    G. Melville, B.J. Allen, Appl. Radiat. Isot. 67, 549 (2009)CrossRefGoogle Scholar
  231. 231.
    C. Apostolidis et al., Appl. Radiat. Isot. 62, 383 (2005)CrossRefGoogle Scholar
  232. 232.
    H. Andersson et al., J. Nucl. Med. 50, 1153 (2009)CrossRefGoogle Scholar
  233. 233.
    S. Rothe et al., Nat. Commun. 4, 1835 (2013)CrossRefGoogle Scholar
  234. 234.
    A. Alfarano et al., J. Phys: Conf. Ser. 41, 115 (2006)ADSGoogle Scholar
  235. 235.
    R.H. Larsen et al., Appl. Radiat. Isot. 47, 135 (1996)CrossRefGoogle Scholar
  236. 236.
    I. Silverman, Scientific opportunities at SARAF with a liquid lithium jet target neutron source, in Proceedings of INTDS 2016, in preparationGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Israel Mardor
    • 1
    • 2
  • Ofer Aviv
    • 2
  • Marilena Avrigeanu
    • 3
  • Dan Berkovits
    • 2
  • Adi Dahan
    • 2
  • Timo Dickel
    • 4
    • 5
  • Ilan Eliyahu
    • 2
  • Moshe Gai
    • 6
  • Inbal Gavish-Segev
    • 2
  • Shlomi Halfon
    • 2
  • Michael Hass
    • 7
  • Tsviki Hirsh
    • 2
  • Boaz Kaiser
    • 2
  • Daniel Kijel
    • 2
  • Arik Kreisel
    • 2
  • Yonatan Mishnayot
    • 2
    • 8
  • Ish Mukul
    • 7
  • Ben Ohayon
    • 8
  • Michael Paul
    • 8
  • Amichay Perry
    • 2
  • Hitesh Rahangdale
    • 8
  • Jacob Rodnizki
    • 2
  • Guy Ron
    • 8
  • Revital Sasson-Zukran
    • 2
  • Asher Shor
    • 2
  • Ido Silverman
    • 2
  • Moshe Tessler
    • 8
  • Sergey Vaintraub
    • 2
  • Leo Weissman
    • 2
  1. 1.School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael
  2. 2.Soreq Nuclear Research CenterYavneIsrael
  3. 3.Horia Hulubei National Institute for Physics and Nuclear EngineeringBucharest-MagureleRomania
  4. 4.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  5. 5.II.Physikalisches InstitutJustus-Liebig-Universität GießenGießenGermany
  6. 6.LNS at Avery PointUniversity of ConnecticutGrotonUSA
  7. 7.The Weizmann Institute of ScienceRehovotIsrael
  8. 8.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations