Advertisement

Holographic Schwinger effect with chemical potential at finite temperature

  • Le Zhang
  • De-Fu Hou
  • Jian Li
Regular Article - Theoretical Physics

Abstract.

Using AdS/CFT, we investigate the influence of chemical potential on the holographic Schwinger effect at finite temperature. We study the potential barrier for the pair production and calculate the critical electric field \( E_c\) by Dirac-Born-Infeld (DBI) action. It is found that the chemical potential decreases the potential barrier thus enhancing the Schwinger effect.

References

  1. 1.
    J.S. Schwinger, Phys. Rev. 82, 664 (1951)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    I.K. Affleck, N.S. Manton, Nucl. Phys. B 194, 38 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) (Int. J. Theor. Phys. 38ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    G.W. Semenoff, K. Zarembo, Phys. Rev. Lett. 107, 171601 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Sato, K. Yoshida, JHEP 12, 051 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Sato, K. Yoshida, JHEP 09, 134 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    D. Kawai, Y. Sato, K. Yoshida, Phys. Rev. D 89, 101901 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    S. Chakrabortty, B. Sathiapalan, Nucl. Phys. B 890, 241 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S. Bolognesi, F. Kiefer, E. Rabinovici, JHEP 01, 174 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Sato, K. Yoshida, JHEP 04, 111 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    K. Hashimoto, T. Oka, A. Sonoda, JHEP 06, 001 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J. Sadeghi, S. Tahery, F. Razavi, Int. J. Mod. Phys. A 32, 1750045 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Sato, K. Yoshida, JHEP 08, 002 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S.J. Zhang, E. Abdalla, Gen. Rel. Gravit. 48, 60 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J. Ambjorn, Y. Makeenko, Phys. Rev. D 85, 061901 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    K. Hashimoto, T. Oka, JHEP 10, 116 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    D.D. Dietrich, Phys. Rev. D 90, 045024 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    W. Fischler, P.H. Nguyen, J.F. Pedraza, W. Tangarife, Phys. Rev. D 91, 086015 (2015)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Ghodrati, Phys. Rev. D 92, 065015 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    X. Wu, JHEP 09, 044 (2015)CrossRefGoogle Scholar
  23. 23.
    Z.q. Zhang, D.f. Hou, Y. Wu, G. Chen, Adv. High Energy Phys. 2016, 9258106 (2016)Google Scholar
  24. 24.
    A.S. Gorsky, K.A. Saraikin, K.G. Selivanov, Nucl. Phys. B 628, 270 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    K.B. Fadafan, F. Saiedi, Eur. Phys. J. C 75, 612 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    D. Kawai, Y. Sato, K. Yoshida, Int. J. Mod. Phys. A 30, 1530026 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    G.T. Horowitz, A. Strominger, Nucl. Phys. B 360, 197 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    C. Ewerz, L. Lin, A. Samberg, Konrad Schade, PoS CPOD2014, 037 (2015)Google Scholar
  29. 29.
    E.D. Hoker, D.Z. Freedman, arXiv:hep-th/0201253Google Scholar
  30. 30.
    Barton Zwiebach, A First Course in String Theory (Cambridge University Press, 2004)Google Scholar
  31. 31.
    J. Kapusta, C. Gale, Finite Temperature Field Theory-Principles and Applications (Cambridge University Press, 2006)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE)Central China Normal UniversityWuhanChina
  2. 2.The College of Post and TelecommunicationWuhan Institute of TechnologyWuhanChina

Personalised recommendations