Advertisement

Electromagnetic transition form factors of the Roper resonance in baryon chiral perturbation theory

Regular Article - Theoretical Physics
  • 16 Downloads

Abstract.

We consider the electromagnetic transition form factors of the Roper resonance in the framework of an effective field theory of pions, nucleons and delta and Roper resonances as explicit degrees of freedom. We fit two free parameters to experimental data for the N(1440) photon decay helicity amplitudes \( A_{1/2}\) taken from PDG and make predictions for the \( Q^2\) dependence of these amplitudes. We also estimate the contributions of the delta resonances.

References

  1. 1.
    S. Weinberg, Physica A 96, 327 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    J. Gasser, M.E. Sainio, A. Svarc, Nucl. Phys. B 307, 779 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    E.E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    V. Bernard, N. Kaiser, J. Kambor, U.-G. Meißner, Nucl. Phys. B 388, 315 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    H.B. Tang, arXiv:hep-ph/9607436Google Scholar
  8. 8.
    T. Becher, H. Leutwyler, Eur. Phys. J. C 9, 643 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    J. Gegelia, G. Japaridze, Phys. Rev. D 60, 114038 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer, Phys. Rev. D 68, 056005 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    T.R. Hemmert, B.R. Holstein, J. Kambor, J. Phys. G 24, 1831 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    V. Bernard, T.R. Hemmert, U.-G. Meißner, Phys. Lett. B 565, 137 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    C. Hacker, N. Wies, J. Gegelia, S. Scherer, Phys. Rev. C 72, 055203 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    T. Fuchs, M.R. Schindler, J. Gegelia, S. Scherer, Phys. Lett. B 575, 11 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    P.C. Bruns, U.-G. Meißner, Eur. Phys. J. C 40, 97 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    P.C. Bruns, U.-G. Meißner, Eur. Phys. J. C 58, 407 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    C. Terschlüsen, S. Leupold, M.F.M. Lutz, PoS Bormio2013, 046 (2013)Google Scholar
  20. 20.
    S. Leupold, C. Terschlüsen, PoS Bormio2012, 024 (2012)Google Scholar
  21. 21.
    E. Epelbaum, J. Gegelia, U.-G. Meißner, D.L. Yao, Eur. Phys. J. C 75, 499 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    L.D. Roper, Phys. Rev. Lett. 12, 340 (1964)ADSCrossRefGoogle Scholar
  23. 23.
    B. Borasoy, P.C. Bruns, U.-G. Meißner, R. Lewis, Phys. Lett. B 641, 294 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    D. Djukanovic, J. Gegelia, S. Scherer, Phys. Lett. B 690, 123 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    T. Bauer, J. Gegelia, S. Scherer, Phys. Lett. B 715, 234 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    B. Long, U. van Kolck, Nucl. Phys. A 870-871, 72 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    J. Gegelia, U.-G. Meißner, D.L. Yao, Phys. Lett. B 760, 736 (2016)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    T. Bauer, S. Scherer, L. Tiator, Phys. Rev. C 90, 015201 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    R.G. Stuart, in $\ab{Z}^0$ Physics, edited by J. Tran Thanh Van (Editions Frontieres, Gif-sur-Yvette, 1990) p. 41Google Scholar
  30. 30.
    A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Nucl. Phys. B 560, 33 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    S. Bellucci, J. Gasser, M.E. Sainio, Nucl. Phys. B 423, 80 (1994) 431ADSCrossRefGoogle Scholar
  32. 32.
    W. Rarita, J.S. Schwinger, Phys. Rev. 60, 61 (1941)ADSCrossRefGoogle Scholar
  33. 33.
    D.L. Yao, D. Siemens, V. Bernard, E. Epelbaum, A.M. Gasparyan, J. Gegelia, H. Krebs, U.-G. Meißner, JHEP 05, 038 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    H.B. Tang, P.J. Ellis, Phys. Lett. B 387, 9 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    V. Pascalutsa, Phys. Lett. B 503, 85 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    H. Krebs, E. Epelbaum, U.-G. Meißner, Phys. Lett. B 683, 222 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    D. Djukanovic, J. Gegelia, A. Keller, S. Scherer, Phys. Lett. B 680, 235 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    D. Djukanovic, J. Gegelia, A. Keller, S. Scherer, L. Tiator, Phys. Lett. B 742, 55 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    D. Djukanovic, E. Epelbaum, J. Gegelia, H. Krebs, U.-G. Meißner, Eur. Phys. J. A 51, 101 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    R. Mertig, M. Bohm, A. Denner, Comput. Phys. Commun. 64, 345 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  43. 43.
    S.R. Beane, U. van Kolck, J. Phys. G 31, 921 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Elementary Particle Physics, ITPIlia State UniversityTbilisiGeorgia
  2. 2.Helmholtz Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany

Personalised recommendations