Revisiting the residual temperature distribution in prompt neutron emission in fission

Regular Article - Theoretical Physics
  • 18 Downloads

Abstract.

A new triangular form of the residual temperature distribution P(T), entering the prompt emission models in which the sequential emission is globally taken into account (e.g., the Los Alamos model of Madland and Nix with subsequent improvements and the Point-by-Point model), is proposed. A deterministic treatment of the successive emission of prompt neutrons, which is based on recursive equations of the residual temperatures, was developed. This modeling was validated by the good description of many and different experimental data of prompt emission (e.g., \(\overline{\nu}(A)\), \(\langle\nu\rangle\)(TKE), \(\langle\varepsilon\rangle (A)\), \(\langle\varepsilon\rangle\)(TKE), \(\overline{E}_{\gamma} (A)\), etc.) and the good agreement with the results of other prompt emission models. To see a possible systematic behaviour of P(T) as a function of energy and fissioning nucleus, the deterministic treatment of sequential emission was applied to 11 nuclei undergoing fission (spontaneously or induced by thermal and fast neutrons with energies up to the threshold of the second chance fission) for which reliable experimental fission fragment distributions Y(A, TKE) exist. The shapes of all P(T) distributions for the light and heavy fragment groups and for all fragments resulting from this modeling can be approximated with a triangular form. To make possible the use of this form into the prompt emission models with a global treatment of sequential emission, a connection between the average residual temperature \(\langle \mathrm{Tr} \rangle\) and the temperature of initial fragments \(\langle \mathrm{Ti} \rangle\) is needed. An important finding of this study concerns the ratio \(\langle \mathrm{Tr} \rangle / \langle \mathrm{Ti} \rangle\), which is \( \approx 0.6\) for all studied fissioning systems. This result allows to obtain a new triangular form of P(T) defined only as a function of initial temperature, which is applicable to any fissioning system at any energy, in the frame of prompt emission models with a global treatment of sequential emission.

References

  1. 1.
    D.G. Madland, J.R. Nix, Nucl. Sci. Eng. 81, 213 (1982)CrossRefGoogle Scholar
  2. 2.
    D.G. Madland, A.C. Kahler, Nucl. Phys. A 957, 289 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    R. Capote, Y.J. Chen, F.-J. Hambsch, N.V. Kornilov, J.P. Lestone, O. Litaize, B. Morillon, D. Neudecker, S. Oberstedt, T. Ohsawa, N. Otuka, V.G. Pronyaev, A. Saxena, O. Serot, O.A. Shcherbakov, N.C. Shu, D.L. Smith, P. Talou, A. Trkov, A.C. Tudora, R. Vogt, S. Vorobyev, Nucl. Data Sheets 131, 1 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    A. Tudora, F.-J. Hambsch, Eur. Phys. J. A. 53, 159 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    A. Al-Adili, F.-J. Hambsch, S. Pomp, S. Oberstedt, Phys. Rev. C 86, 054601 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    A. Göök, F.-J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    C. Wagemans, E. Allaert, A. Deruytter, R. Barthelemy, P. Schillebeeckx, Phys. Rev. C 30, 218 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    L. Demattè, Investigation of the fission fragments mass and energy distributions of ^236,238,240,242,244Pu(SF), PhD Thesis, Univ. of Ghent, coordinator C. Wagemans (1995-1996)Google Scholar
  9. 9.
    F.-J. Hambsch, F. Vivès, P. Siegler, S. Oberstedt, Nucl. Phys. A 679, 3 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    F. Vivès, F.-J. Hambsch, H. Bax, S. Oberstedt, Nucl. Phys. A 662, 63 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    A. Al-Adili, F.-J. Hambsch, S. Pomp, S. Oberstedt, Phys. Rev. C 93, 034603 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    A. Tudora, F.-J. Hambsch, I. Visan, G. Giubega, Nucl. Phys. A 940, 242 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    C. Morariu, A. Tudora, F.-J. Hambsch, S. Oberstedt, C. Manailescu, J. Phys. G: Nucl. Part. Phys. 39, 055103 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009) IAEA-RIPL3 electronic library, available online at https://www-nds.iaea.org ADSCrossRefGoogle Scholar
  16. 16.
    O. Iwamoto, J. Nucl. Sci. Technol. 45, 910 (2008)CrossRefGoogle Scholar
  17. 17.
    R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009) IAEA-RIPL3 electronic library, available online at https://www-nds.iaea.org ADSCrossRefGoogle Scholar
  18. 18.
    A.V. Ignatiuk, in IAEA-RIPL1-TECDOC-1034, Segment V (1998) Chapt. 5.1.4Google Scholar
  19. 19.
    A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)ADSCrossRefGoogle Scholar
  20. 20.
    T. von Egidy, D. Bucurescu, Phys. Rev. C 80, 054310 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009) IAEA-RIPL3 electronic library, available online at https://www-nds.iaea.org ADSCrossRefGoogle Scholar
  22. 22.
    J. Terrell, Phys. Rev. 113, 527 (1959)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Tudora, F.-J. Hambsch, S. Oberstedt, G. Giubega, I. Visan, Nucl. Sci. Eng. 181, 289 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Manailescu, A. Tudora, F.-J. Hambsch, C. Morariu, S. Oberstedt, Nucl. Phys. A 867, 12 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    I. Visan, G. Giubega, A. Tudora, Rom. Rep. Phys. 67, 483 (2015)Google Scholar
  26. 26.
    K.-H. Schmidt, B. Jurado, C. Amoureux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016) GEF code version 2015/2.2, available online at http://www.cenbg.in2p3.fr/-GEF- and http://www.khs-erzhausen.de/GEF.html ADSCrossRefGoogle Scholar
  27. 27.
    A. Göök, F.-J. Hambsch, S. Oberstedt, EPJ Web of Conferences 146, 04007 (2017)CrossRefGoogle Scholar
  28. 28.
    R. Mueller, A.A. Naqvi, F. Käppeler, F. Dickmann, Phys. Rev. C 29, 885 (1984) numerical data from EXFOR (available online at https://www-nds.iaea.org ADSCrossRefGoogle Scholar
  29. 29.
    A. Tudora, F.-J. Hambsch, V. Tobosaru, Phys. Rev. C 94, 044601 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    A. Tudora, F.-J. Hambsch, V. Tobosaru, EPJ Web of Conferences 146, 04004 (2017)CrossRefGoogle Scholar
  31. 31.
    C. Manailescu, PhD Thesis University of Bucharest and CEA-Cadarache, France, coordinators O. Serot and A. Tudora (2012)Google Scholar
  32. 32.
    A. Göök, F.-J. Hambsch, S. Oberstedt, EPJ Web of Conferences 169, 00004 (2018)CrossRefGoogle Scholar
  33. 33.
    A. Tudora, F.-J. Hambsch, EPJ Web of Conferences 169, 00025 (2018)CrossRefGoogle Scholar
  34. 34.
    H. Nifenecker, C. Signarbieux, R. Babinet, J. Poitou, Neutron and gamma emission in fission, IAEA-SM-174/207 117 review paper (1973)Google Scholar
  35. 35.
    A. Tudora, F.-J. Hambsch, G. Giubega, I. Visan, Nucl. Phys. A 933, 165 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    A. Tudora, F.-J. Hambsch, Ann. Nucl. Energy 37, 771 (2010)CrossRefGoogle Scholar
  37. 37.
    F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Phys. Rev. C 6, 1023 (1972)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Bucharest, Faculty of PhysicsBucharest, MagureleRomania
  2. 2.European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, Unit G2GeelBelgium

Personalised recommendations