Advertisement

The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay

  • F. Cappuzzello
  • C. Agodi
  • M. Cavallaro
  • D. Carbone
  • S. Tudisco
  • D. Lo Presti
  • J. R. B. Oliveira
  • P. Finocchiaro
  • M. Colonna
  • D. Rifuggiato
  • L. Calabretta
  • D. Calvo
  • L. Pandola
  • L. Acosta
  • N. Auerbach
  • J. Bellone
  • R. Bijker
  • D. Bonanno
  • D. Bongiovanni
  • T. Borello-Lewin
  • I. Boztosun
  • O. Brunasso
  • S. Burrello
  • S. Calabrese
  • A. Calanna
  • E. R. Chávez Lomelí
  • G. D’Agostino
  • P. N. De Faria
  • G. De Geronimo
  • F. Delaunay
  • N. Deshmukh
  • J. L. Ferreira
  • M. Fisichella
  • A. Foti
  • G. Gallo
  • H. Garcia-Tecocoatzi
  • V. Greco
  • A. Hacisalihoglu
  • F. Iazzi
  • R. Introzzi
  • G. Lanzalone
  • J. A. Lay
  • F. La Via
  • H. Lenske
  • R. Linares
  • G. Litrico
  • F. Longhitano
  • J. Lubian
  • N. H. Medina
  • D. R. Mendes
  • M. Moralles
  • A. Muoio
  • A. Pakou
  • H. Petrascu
  • F. Pinna
  • S. Reito
  • A. D. Russo
  • G. Russo
  • G. Santagati
  • E. Santopinto
  • R. B. B. Santos
  • O. Sgouros
  • M. A. G. da Silveira
  • S. O. Solakci
  • G. Souliotis
  • V. Soukeras
  • A. Spatafora
  • D. Torresi
  • R. Magana Vsevolodovna
  • A. Yildirim
  • V. A. B. Zagatto
Review

Abstract.

The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. First experimental results obtained at the INFN-LNS laboratory for the 40Ca(18O,18Ne)40Ar reaction at 270MeV give an encouraging indication on the capability of the proposed technique to access relevant quantitative information. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer. The former is used for the acceleration of the required high resolution and low emittance heavy-ion beams and the latter is the large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the experimental resolution and sensitivity required for the accurate measurement of the DCE cross sections at forward angles. However, the tiny values of such cross sections and the resolution requirements demand beam intensities much larger than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities in this perspective is part of the NUMEN project and will be discussed in the article.

References

  1. 1.
    E. Caurier, J. Menendez, F. Nowacki, A. Poves, Phys. Rev. Lett. 100, 052503 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J. Suhonen, M. Kortelainen, Int. J. Mod. Phys. E 17, 1 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    N.L. Vaquero, T.R. Rodriguez, J.L. Egido, Phys. Rev. Lett. 111, 142501 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87, 014315 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Kwiatkowski et al., Phys. Rev. C 89, 045502 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    H. Akimune et al., Phys. Lett. B 394, 23 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Schiffer et al., Phys. Rev. Lett. 100, 112501 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    D. Frekers, Prog. Part. Nucl. Phys. 64, 281 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    C.J. Guess et al., Phys. Rev. C 83, 064318 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S.J. Freeman, J.P. Schiffer, J. Phys. G: Nucl. Part. Phys. 39, 124004 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J. Barea, J. Kotila, F. Iachello, Phys. Rev. Lett. 109, 042501 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Report to the Nuclear Science Advisory Committee, Neutrinoless Double Beta Decay (2014)Google Scholar
  13. 13.
    J. Fujita, K. Ikeda, Nucl. Phys. 67, 145 (1965)CrossRefGoogle Scholar
  14. 14.
    D.H. Wilkinson, Nucl. Phys. A 225, 365 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 91, 034304 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    J. Suhonen, O. Civitarese, Phys. Lett. B 725, 153 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Faessler, G.L. Fogli, E. Lisi, V. Rodin, A.M. Rotunno, F. Simkovic, J. Phys. G: Nucl. Part. Phys. 35, 075104 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    R.G.H. Robertson, Mod. Phys. Lett. A 28, 1350021 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    S. Dell’Oro, S. Marcocci, F. Vissani, Phys. Rev. D 90, 033005 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    J. Menendez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    J.D. Vergados, Phys. Rev. D 25, 914 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    A. Fazely, L.C. Liu, Phys. Rev. Lett. 57, 968 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    S. Mordechai et al., Phys. Rev. Lett. 61, 531 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    N. Auerbach et al., Ann. Phys. 192, 77 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    J. Blomgren et al., Phys. Lett. B 362, 34 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    F. Naulin et al., Phys. Rev. C 25, 1074 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    D.M. Drake et al., Phys. Rev. Lett. 45, 1765 (1980)ADSCrossRefGoogle Scholar
  28. 28.
    D.R. Bes, O. Dragun, E.E. Maqueda, Nucl. Phys. A 405, 313 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    C.H. Dasso, A. Vitturi, Phys. Rev. C 34, 743 (1986)ADSCrossRefGoogle Scholar
  30. 30.
    W. von Oertzen et al., Nucl. Phys. A 588, 129c (1995)ADSCrossRefGoogle Scholar
  31. 31.
    F. Cappuzzello et al., Eur. Phys. J. A 51, 145 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    H. Matsubara et al., Few-Body Syst. 54, 1433 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    D.M. Brink, Phys. Lett. B 40, 37 (1972)ADSCrossRefGoogle Scholar
  34. 34.
    F. Cappuzzello et al., J. Phys.: Conf. Ser. 630, 012018 (2015)Google Scholar
  35. 35.
    C. Agodi et al., Nucl. Part. Phys. Proc. 265-266, 28 (2015)CrossRefGoogle Scholar
  36. 36.
    W.M. Visscher, R.A. Ferrell, Phys. Rev. 107, 781 (1957)ADSCrossRefGoogle Scholar
  37. 37.
    S. Bloom, N. Glendenning, S. Mozkowski, Phys. Rev. Lett. 3, 98 (1959)ADSCrossRefGoogle Scholar
  38. 38.
    C. Wong, J.D. Anderson, S.D. Bloom, J.W. McClure, B.D. Walker, Phys. Rev. 123, 598 (1961)ADSCrossRefGoogle Scholar
  39. 39.
    J.D. Anderson, C. Wong, I.W. McClure, Phys. Rev. 126, 2170 (1962)ADSCrossRefGoogle Scholar
  40. 40.
    R. Helmer, Can. J. Phys. 65, 588 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    D.E. Bainum et al., Phys. Rev. Lett. 44, 1751 (1980)ADSCrossRefGoogle Scholar
  42. 42.
    F. Petrovich, W.G. Love, R.J. McCarthy, Phys. Rev. 21, 1718 (1980)ADSGoogle Scholar
  43. 43.
    C. Gaarde et al., Nucl. Phys. A 369, 258 (1981)ADSCrossRefGoogle Scholar
  44. 44.
    D.J. Mercer et al., Phys. Rev. C 49, 3104 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    E. Sugarbaker et al., Phys. Rev. Lett. 65, 551 (1990)ADSCrossRefGoogle Scholar
  46. 46.
    F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    W.P. Alford, B.M. Spicer, Adv. Nucl. Phys. 24, 1 (1998)Google Scholar
  48. 48.
    T.N. Taddeucci et al., Nucl. Phys. A 469, 125 (1987)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    H. Ejiri, Phys. Rep. 338, 265 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    D. Frekers, Progr. Part. Nucl. Phys. 57, 217 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    K. Ikeda, S. Fujii, J.I. Fujita, Phys. Lett. 2, 169 (1962)ADSCrossRefGoogle Scholar
  53. 53.
    K. Ikeda, S. Fujii, J.I. Fujita, Phys. Lett. 3, 271 (1963)ADSCrossRefGoogle Scholar
  54. 54.
    D.E. Bainum et al., Phys. Rev. Lett. 44, 1751 (1980)ADSCrossRefGoogle Scholar
  55. 55.
    M.C. Vetterli, O. Hausser, R. Abegg et al., Phys. Rev. C 40, 559 (1989)ADSCrossRefGoogle Scholar
  56. 56.
    S.D. Bloom, C.D. Goodman, S.M. Grimes, R.F. Hausman Jr., Phys. Lett. B 107, 336 (1981)ADSCrossRefGoogle Scholar
  57. 57.
    M. Fujiwaraa et al., Nucl. Instrum. Methods A 422, 484 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Fujita et al., Nucl. Instrum. Methods Phys. Res. B 126, 274 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    H. Fujita et al., Nucl. Instrum. Methods Phys. Res. A 484, 17 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    T. Wasaka et al., Nucl. Instrum. Methods A 482, 70 (2002)ADSGoogle Scholar
  61. 61.
    H. Okamura et al., Phys. Lett. B 345, 1 (1995)ADSCrossRefGoogle Scholar
  62. 62.
    S. Rakers et al., Nucl. Instrum. Methods A 481, 253 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    H. Ohnuma et al., Phys. Rev. C 47, 648 (1992)ADSCrossRefGoogle Scholar
  64. 64.
    H. Dohmann et al., Phys. Rev. C 78, 041602(R) (2008)ADSCrossRefGoogle Scholar
  65. 65.
    E.-W. Grewe et al., Phys. Rev. C 78, 044301 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    H. Ejiri, J. Phys. Soc. Jpn. 81, 033201 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    M. Cavallaro et al., Phys. Rev. C 88, 054601 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    M. Cavallaro et al., Phys. Rev. Lett. 118, 012701 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    D. Carbone et al., Phys. Rev. C 95, 034603 (2017)ADSCrossRefGoogle Scholar
  70. 70.
    M.J. Ermamatov et al., Phys. Rev. C 94, 024610 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    M.J. Ermamatov et al., Phys. Rev. C 96, 044603 (2017)ADSCrossRefGoogle Scholar
  72. 72.
    H. Lenske, Nucl. Phys. A 482, 343 (1989)ADSCrossRefGoogle Scholar
  73. 73.
    M. Toyama, Phys. Lett. B 38, 147 (1972)ADSCrossRefGoogle Scholar
  74. 74.
    W.R. Wharton, P.T. Debecev, Phys. Rev. C 11, 1963 (1975)ADSCrossRefGoogle Scholar
  75. 75.
    J.S. Winfield et al., Phys. Rev. C 33, 1333 (1986)ADSCrossRefGoogle Scholar
  76. 76.
    H. Lenske, H.H. Wolter, H.G. Bohlen, Phys. Rev. Lett. 62, 1457 (1989)ADSCrossRefGoogle Scholar
  77. 77.
    S. Nakayama et al., Phys. Lett. B 246, 342 (1990)ADSCrossRefGoogle Scholar
  78. 78.
    F. Cappuzzello et al., Nucl. Phys. A 739, 30 (2004)ADSCrossRefGoogle Scholar
  79. 79.
    C.A. Bertulani, Nucl. Phys. A 554, 493 (1993)ADSCrossRefGoogle Scholar
  80. 80.
    H.G. Bohlen et al., Nucl. Phys. A 488, 89c (1988)ADSCrossRefGoogle Scholar
  81. 81.
    W. von Oertzen, Nucl. Phys. A 482, 357c (1988)ADSCrossRefGoogle Scholar
  82. 82.
    S. Nakayama et al., Phys. Rev. C 60, 047303 (1999)ADSCrossRefGoogle Scholar
  83. 83.
    T. Annakkage et al., Nucl. Phys. A 648, 3 (1999)ADSCrossRefGoogle Scholar
  84. 84.
    J. Cook et al., Phys. Rev. C 30, 1538 (1984)ADSCrossRefGoogle Scholar
  85. 85.
    N.M. Clarke, J. Cook, Nucl. Phys. A 458, 137 (1986)ADSCrossRefGoogle Scholar
  86. 86.
    F. Cappuzzello et al., Phys. Lett. B 516, 21 (2001)ADSCrossRefGoogle Scholar
  87. 87.
    A. Etchegoyen et al., Phys. Rev. C 38, 2124 (1988)ADSCrossRefGoogle Scholar
  88. 88.
    C. Nociforo et al., Eur. Phys. J. A 27, 283 (2006)CrossRefGoogle Scholar
  89. 89.
    M. Cavallaro, Nuovo Cimento C 34, 1 (2011)Google Scholar
  90. 90.
    H. Ejiri, N. Soukouti, J. Suhonen, Phys. Lett. B 729, 27 (2014)ADSCrossRefGoogle Scholar
  91. 91.
    L. Jokiniemi, J. Suhonen, H. Ejiri, Adv. High Energy Phys. 2016, 8417598 (2016)CrossRefGoogle Scholar
  92. 92.
    J. Suhonen, O. Civitarese, Phys. Rep. 300, 123 (1998)ADSCrossRefGoogle Scholar
  93. 93.
    N. Auerback et al., Phys. Rev. Lett. 59, 1076 (1987)ADSCrossRefGoogle Scholar
  94. 94.
    J. Cerny, in Proceedings of the 3rd International Conference on Nuclei Far from Stability, Cargese, 1976 (CERN, 1976)Google Scholar
  95. 95.
    L.K. Fifield et al., Nucl. Phys. A 385, 505 (1982)ADSCrossRefGoogle Scholar
  96. 96.
    K. Kisamori et al., Phys. Rev. Lett. 116, 052501 (2016)ADSCrossRefGoogle Scholar
  97. 97.
    K. Takahisa, arXiv:1703.08264 (2017)Google Scholar
  98. 98.
    M. Takaki, RIKEN Accelerator Progress Report 47 (2014)Google Scholar
  99. 99.
    H. Sagawa, T. Uesaka, Phys. Rev. C 94, 064325 (2016)ADSCrossRefGoogle Scholar
  100. 100.
    F. Cappuzzello et al., Eur. Phys. J. A 52, 167 (2016)ADSCrossRefGoogle Scholar
  101. 101.
    P. Puppe et al., Phys. Rev. C 84, 051305 (2011)ADSCrossRefGoogle Scholar
  102. 102.
    H. Ejiri et al., J. Phys. Soc. Jpn. 82, 044202 (2013)ADSCrossRefGoogle Scholar
  103. 103.
    J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)ADSCrossRefGoogle Scholar
  104. 104.
    L. Mandelstam, Ig. Tamm, J. Phys. USSR 9, 249 (1945)Google Scholar
  105. 105.
    J. Menéndez, N. Shimizu, K. Yako, arXiv:1712.08691v1Google Scholar
  106. 106.
    N. Shimizu, J. Menéndez, K. Yako, arXiv:1709:01088Google Scholar
  107. 107.
    A. Cunsolo et al., Eur. Phys. J. ST 150, 343 (2007)CrossRefGoogle Scholar
  108. 108.
    M. Cavallaro et al., Eur. Phys. J. A 48, 59 (2012)ADSCrossRefGoogle Scholar
  109. 109.
    D. Carbone et al., Eur. Phys. J. A 48, 60 (2012)ADSCrossRefGoogle Scholar
  110. 110.
    M. Bondì et al., AIP Conf. Proc. 1595, 245 (2014)ADSCrossRefGoogle Scholar
  111. 111.
    F. Cappuzzello et al., Nucl. Instrum. Methods A 621, 419 (2010)ADSCrossRefGoogle Scholar
  112. 112.
    M. Cavallaro et al., Nucl. Instrum. Methods A 648, 46 (2011)ADSCrossRefGoogle Scholar
  113. 113.
    F. Cappuzzello et al., Nucl. Instrum. Methods A 638, 74 (2011)ADSCrossRefGoogle Scholar
  114. 114.
    M. Cavallaro et al., Nucl. Instrum. Methods A 637, 77 (2011)ADSCrossRefGoogle Scholar
  115. 115.
    F. Cappuzzello et al., Nucl. Instrum. Methods A 763, 314 (2014)ADSCrossRefGoogle Scholar
  116. 116.
    M. Cavallaro et al., PoS BORMIO2017, 015 (2017)Google Scholar
  117. 117.
    D. Rifuggiato, in Proceedings of Cyclotrons 2013, Vancouver, BC, Canada (CERN, 2014)Google Scholar
  118. 118.
    D. Pereira et al., Phys. Lett. B 710, 426 (2012)ADSCrossRefGoogle Scholar
  119. 119.
    J.R.B. Oliveira et al., J. Phys. G 40, 105101 (2013)ADSCrossRefGoogle Scholar
  120. 120.
    F. Cappuzzello et al., Eur. Phys. J. A 51, 169 (2016)ADSCrossRefGoogle Scholar
  121. 121.
    A. Lazzaro et al., Nucl. Instrum. Methods A 591, 394 (2008)ADSCrossRefGoogle Scholar
  122. 122.
    A. Lazzaro et al., Nucl. Instrum. Methods A 585, 136 (2008)ADSCrossRefGoogle Scholar
  123. 123.
    A. Lazzaro et al., Nucl. Instrum. Methods A 570, 192 (2007)ADSCrossRefGoogle Scholar
  124. 124.
    A. Lazzaro et al., Nucl. Instrum. Methods A 602, 494 (2009)ADSCrossRefGoogle Scholar
  125. 125.
    F. Cappuzzello et al., Nat. Commun. 6, 6743 (2015)CrossRefGoogle Scholar
  126. 126.
    V. Soukeras et al., Phys. Rev. C 91, 057601 (2015)ADSCrossRefGoogle Scholar
  127. 127.
    D. Carbone et al., Phys. Rev. C 90, 064621 (2014)ADSCrossRefGoogle Scholar
  128. 128.
    M. Cavallaro et al., Phys. Rev. C 93, 064323 (2016)ADSCrossRefGoogle Scholar
  129. 129.
    D. Carbone et al., J. Phys.: Conf. Ser. 312, 082016 (2011)Google Scholar
  130. 130.
    C. Boiano et al., IEEE Trans. Nucl. Sci. 55, 3563 (2008)ADSCrossRefGoogle Scholar
  131. 131.
    A. Cunsolo et al., Nucl. Instrum. Methods A 484, 56 (2002)ADSCrossRefGoogle Scholar
  132. 132.
    C.D. Moak et al., Phys. Rev. Lett. 18, 41 (1967)ADSCrossRefGoogle Scholar
  133. 133.
    H. Gauvin et al., Nucl. Instrum. Methods B 47, 339 (1990)ADSCrossRefGoogle Scholar
  134. 134.
    K. Shima, N. Kuno, M. Yamanouchi, H. Tawara, At. Data Nucl. Data Tables 51, 173 (1992)ADSCrossRefGoogle Scholar
  135. 135.
    D. Carbone, Eur. Phys. J. Plus 130, 143 (2015)CrossRefGoogle Scholar
  136. 136.
    K. Makino, M. Berz, Nucl. Instrum. Methods A 427, 338 (1999)ADSCrossRefGoogle Scholar
  137. 137.
    M. Berz, AIP Conf. Proc. 249, 456 (1991)ADSGoogle Scholar
  138. 138.
    M. Berz, K. Makino, CERN-76_13 (CERN, 1976)  https://doi.org/10.5170/CERN-1976-013
  139. 139.
    A. Lazzaro, PhD Thesis, University of Catania (2003)Google Scholar
  140. 140.
    G.R. Satchler, International Series Of Monographs On Physics, Vol. 68 (Clarendon, Oxford, UK, 1983)Google Scholar
  141. 141.
    H. Lenske, J. Bellone, M. Colonna, J.-A. Lay, in preparationGoogle Scholar
  142. 142.
    H. Lenske, HIDEX codeGoogle Scholar
  143. 143.
    F. Iachello, P.V. Isacker, The Interacting Boson-Fermion Model (Cambridge University, Cambridge, UK, 1991)Google Scholar
  144. 144.
    A. Arima, F. Iachello, Phys. Rev. Lett. 35, 1069 (1975)ADSCrossRefGoogle Scholar
  145. 145.
    A. Arima, F. Iachello, Phys. Rev. Lett. 40, 385 (1978)ADSCrossRefGoogle Scholar
  146. 146.
    H. Lenske, H.H. Wolter, H.G. Bohlen, Phys. Rev. Lett. 62, 1457 (1989)ADSCrossRefGoogle Scholar
  147. 147.
    C. Brendel et al., Nucl. Phys. A 477, 162 (1988)ADSCrossRefGoogle Scholar
  148. 148.
    H. Lenske, G. Schrieder, Eur. Phys. J. A 2, 41 (1998)ADSCrossRefGoogle Scholar
  149. 149.
    F. Froemel, H. Lenske, U. Mosel, Nucl. Phys. A 723, 544 (2003)ADSCrossRefGoogle Scholar
  150. 150.
    P. Konrad, H. Lenske, Eur. Phys. J. A 33, 291 (2007)ADSCrossRefGoogle Scholar
  151. 151.
    N. Rocco, A. Lovato, O. Benhar, Phys. Rev. Lett. 116, 192501 (2016)ADSCrossRefGoogle Scholar
  152. 152.
    O. Benhar, Nucl. Phys. News 26, 15 (2016)CrossRefGoogle Scholar
  153. 153.
    J. Johanson et al., Nucl. Phys. A 712, 75 (2002)ADSCrossRefGoogle Scholar
  154. 154.
    W. Brodowski et al., Phys. Rev. Lett. 88, 192301 (2002)ADSCrossRefGoogle Scholar
  155. 155.
    J. Pätzold et al., Phys. Rev. C 67, 052202(R) (2003)ADSCrossRefGoogle Scholar
  156. 156.
    E. Doroshkevich et al., Eur. Phys. J. A 18, 171 (2003)ADSCrossRefGoogle Scholar
  157. 157.
    T. Skorodko et al., Eur. Phys. J. A 35, 317 (2008)ADSCrossRefGoogle Scholar
  158. 158.
    T. Skorodko, Phys. Lett. B 679, 30 (2009)ADSCrossRefGoogle Scholar
  159. 159.
    H. Clement et al., Int. J. Mod. Phys. A 20, 1747 (2005)ADSCrossRefGoogle Scholar
  160. 160.
    S. Abd El-Bary et al., Eur. Phys. J. A 37, 267 (2008)ADSCrossRefGoogle Scholar
  161. 161.
    S. Abd El-Samad et al., Eur. Phys. J. A 42, 159 (2009)ADSCrossRefGoogle Scholar
  162. 162.
    T. Tsuboyama, F. Sai, N. Katayama, T. Kishida, S.S. Yamamoto, Phys. Rev. C 62, 034001 (2000)ADSCrossRefGoogle Scholar
  163. 163.
    V.V. Sarantsev et al., Phys. At. Nucl. 70, 1885 (2007)CrossRefGoogle Scholar
  164. 164.
    G. Agakishiev et al., Phys. Lett. B 750, 184 (2015)ADSCrossRefGoogle Scholar
  165. 165.
    L. Alvarez-Ruso, E. Oset, E. Hernandez, Nucl. Phys. A 633, 519 (1998)ADSCrossRefGoogle Scholar
  166. 166.
    X. Cao, B.S. Zou, H.S. Xu, Phys. Rev. C 81, 065201 (2010)ADSCrossRefGoogle Scholar
  167. 167.
    Ian J. Thompson, Comput. Phys. Rep. 7, 167 (1988)ADSCrossRefGoogle Scholar
  168. 168.
    B. Paes et al., Phys. Rev. C 96, 044612 (2017)ADSCrossRefGoogle Scholar
  169. 169.
    R. Magana Vsevolodovna, E. Santopinto, J. Lubian, B. Paes, in preparationGoogle Scholar
  170. 170.
    T. Otskuka, A. Arima, I. Talmi, F. Iachello, Phys. Lett. B 76, 139 (1978)ADSCrossRefGoogle Scholar
  171. 171.
    T. Otskuka, A. Arima, I. Talmi, F. Iachello, Nucl. Phys. A 309, 1 (1978)ADSCrossRefGoogle Scholar
  172. 172.
    P.D. Duval, B.R. Barrett, Phys. Rev. Lett. 46, 1504 (1981)ADSCrossRefGoogle Scholar
  173. 173.
    S. Pittel, P.D. Duval, B.R. Barrett, Ann. Phys. 144, 168 (1982)ADSCrossRefGoogle Scholar
  174. 174.
    A. Frank, P. Van Isacker, Phys. Rev. C 26, 1661 (1982)ADSCrossRefGoogle Scholar
  175. 175.
    P.O. Lipas, M. Koskinen, H. Harter, R. Nojarov, A. Faessler, Nucl. Phys. A 509, 509 (1990)ADSCrossRefGoogle Scholar
  176. 176.
    J. Barea, F. Iachello, Phys. Rev. C 79, 044301 (2009)ADSCrossRefGoogle Scholar
  177. 177.
    L. Calabretta, A. Calanna, G. D’Agostino, D. Rifuggiato, in Proceedings of Cyclotrons 2016, Zurich, Switzerland (JACoW, 2017)Google Scholar
  178. 178.
    L. Calabretta, A. Calanna, G. Cuttone, G. D’Agostino, D. Rifuggiato, A.D. Russo, Mod. Phys. Lett. A 32, 1740009 (2017)ADSCrossRefGoogle Scholar
  179. 179.
    G. D’Agostino, L. Calabretta, A. Calanna, D. Rifuggiato, in Proceedings of Cyclotrons 2016, Zurich, Switzerland (JACoW, 2017)Google Scholar
  180. 180.
    A. Calanna, Nuovo Cimento C 40, 101 (2017)ADSGoogle Scholar
  181. 181.
    K. Shima et al., At. Data Nucl. Data Tables 51, 173 (1992)ADSCrossRefGoogle Scholar
  182. 182.
    G. Gallo, in Proceedings of Cyclotrons 2016, Zurich, Switzerland (JACoW, 2017)Google Scholar
  183. 183.
    S.S. Tomic, E.V. Samsonov, Phys. Rev. E 65, 036504 (2002)ADSCrossRefGoogle Scholar
  184. 184.
    L. Calabretta, A. Calanna, G. D’Agostino, D. Rifuggiato, A.D. Russo, in Proceedings of IPAC 2017 (JACOW, 2017) accelconf.web.cern.ch/AccelConf/ipac2017/ papers/wepva053.pdfGoogle Scholar
  185. 185.
    A. Radovinsky, L. Calabretta, J. Minervini, A. Zhukovsky, P. Michael, A. Calanna, IEEE Trans. Appl. Superconduct. 26, 4101005 (2016)Google Scholar
  186. 186.
    A. Calanna, L. Calabretta, D. Rifuggiato, G. D’Agostino, G. Gallo, G. Costa, L. Allegra, A.D. Russo, in IPAC 2017 Conference proceedings http://iopscience.iop.org/issue/1742-6596/874/1
  187. 187.
    F. Iazzi et al., WIT Trans. Eng. Sci. 116, 61 (2017)CrossRefGoogle Scholar
  188. 188.
    Los Alamos, User’s Guide for the POISSON/SUPERFISH group of codes, 1987, LA-UR-87-115Google Scholar
  189. 189.
    F. Sauli, Nucl. Instrum. Methods A 805, 2 (2016)ADSCrossRefGoogle Scholar
  190. 190.
    R. Chechik et al., Nucl. Instrum. Methods A 535, 303 (2004)ADSCrossRefGoogle Scholar
  191. 191.
    A. Breskin et al., Nucl. Instrum. Methods A 598, 107 (2009)ADSCrossRefGoogle Scholar
  192. 192.
    G. Bencivenni et al., IEEE Trans. Nucl. Sci. 49, 3242 (2002)ADSCrossRefGoogle Scholar
  193. 193.
    M. Cortesi et al., Rev. Sci. Instrum. 88, 013303 (2017)ADSCrossRefGoogle Scholar
  194. 194.
    J. Pouthas et al., Nucl. Instrum. Methods A 357, 418 (1995)ADSCrossRefGoogle Scholar
  195. 195.
    A. Musumarra et al., Nucl. Instrum. Methods A 370, 558 (1996)ADSCrossRefGoogle Scholar
  196. 196.
    S. Aiello et al., AIP Conf. Proc. 495, 353 (1999)ADSCrossRefGoogle Scholar
  197. 197.
    R. Bougault et al., Eur. Phys. J. A 50, 47 (2014)ADSCrossRefGoogle Scholar
  198. 198.
    G.F. Knoll, Radiation Detection and Measurements (John Wiley & Sons, Inc., 2000)Google Scholar
  199. 199.
    J. Lu et al., Nucl. Instrum. Methods A 471, 374 (2001)ADSCrossRefGoogle Scholar
  200. 200.
    D.G. Sarantites et al., Nucl. Instrum. Methods A 790, 42 (2015)ADSCrossRefGoogle Scholar
  201. 201.
    J.W. Palmour et al., Physica B 185, 461 (1993)ADSCrossRefGoogle Scholar
  202. 202.
    A.A. Lebedev et al., Fiz. Tekh. Poluprovodnikov 38, 129 (2004)Google Scholar
  203. 203.
    A. Muoio et al., EPJ Web of Conferences 117, 10006 (2016)CrossRefGoogle Scholar
  204. 204.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, 1969)Google Scholar
  205. 205.
    M. Moll, Nucl. Instrum. Methods A 511, 97 (2003)ADSCrossRefGoogle Scholar
  206. 206.
    G. Raciti et al., Nucl. Instrum. Methods A 834, 784 (2010)Google Scholar
  207. 207.
    G. Lioliou et al., Nucl. Instrum. Methods A 840, 145 (2016)ADSCrossRefGoogle Scholar
  208. 208.
    X. Zhang et al., IEEE Trans. Nucl. Sci. 60, 2352 (2013)ADSCrossRefGoogle Scholar
  209. 209.
    S. Tudisco, in preparationGoogle Scholar
  210. 210.
  211. 211.
    D. Carbone, M. Cavallaro, C. Agodi, F. Cappuzzello, L. Cosentino, P. Finocchiaro for the NUMEN Collaboration, Results Phys. 6, 863 (2016)ADSCrossRefGoogle Scholar
  212. 212.
    C. Boiano, in 2008 IEEE Nuclear Science Symposium Conference Record (IEEE, 2008) p. 2068Google Scholar
  213. 213.
    M. Cavallaro et al., Nucl. Instrum. Methods A 700, 65 (2013)ADSCrossRefGoogle Scholar
  214. 214.
    D. Carbone, Nucl. Instrum. Methods A, in press  https://doi.org/10.1016/j.nima.2017.10.095
  215. 215.
    G. Miersch, D. Habs, J. Kenntner, D. Schwalm, A. Wolf, Nucl. Instrum. Methods A 369, 277 (1996)ADSCrossRefGoogle Scholar
  216. 216.
    Liyuan Zhang, Rihua Mao, Ren-Yuan Zhu, in 2009 IEEE Nuclear Science Symposium Conference Record (IEEE, 2009)Google Scholar
  217. 217.
    L. Yi et al., Chin. Phys. C 39, 106003 (2015)ADSCrossRefGoogle Scholar
  218. 218.
    C. Rossi Alvarez, Nuovo Cimento A 111, 601 (1998)ADSGoogle Scholar
  219. 219.
    G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007)ADSCrossRefGoogle Scholar
  220. 220.
    G. De Geronimo, J. Fried, S. Li et al., IEEE Trans. Nucl. Sci. 60, 2314 (2013)ADSCrossRefGoogle Scholar
  221. 221.
    National Instruments Website: www.ni.com
  222. 222.
    ATLAS Collaboration, New small wheel technical design report, CERN-LHCC-2013-006. ATLAS-TDR-020, Geneva, June 2013Google Scholar
  223. 223.
    G.F. Marchioro, P. Moreira, E. Noah, W. Snoeys, T. Calin, Total dose and Single Event Effects (SEE) in a 0.25 m CMOS technology, in Proceedings of the Fourth Workshop on Electronics for LHC Experiments (LEB ’98), Sep. 1998, Roma, Italy (CERN, 1998)Google Scholar
  224. 224.
    R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389, 81 (1997)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • F. Cappuzzello
    • 1
    • 2
  • C. Agodi
    • 2
  • M. Cavallaro
    • 2
  • D. Carbone
    • 2
  • S. Tudisco
    • 2
  • D. Lo Presti
    • 1
    • 3
  • J. R. B. Oliveira
    • 4
  • P. Finocchiaro
    • 2
  • M. Colonna
    • 2
  • D. Rifuggiato
    • 2
  • L. Calabretta
    • 2
  • D. Calvo
    • 5
  • L. Pandola
    • 2
  • L. Acosta
    • 6
  • N. Auerbach
    • 7
  • J. Bellone
    • 1
    • 2
  • R. Bijker
    • 8
  • D. Bonanno
    • 3
  • D. Bongiovanni
    • 2
  • T. Borello-Lewin
    • 4
  • I. Boztosun
    • 9
  • O. Brunasso
    • 5
  • S. Burrello
    • 2
    • 10
  • S. Calabrese
    • 1
    • 2
  • A. Calanna
    • 2
  • E. R. Chávez Lomelí
    • 6
  • G. D’Agostino
    • 1
    • 2
  • P. N. De Faria
    • 11
  • G. De Geronimo
    • 12
  • F. Delaunay
    • 5
    • 13
  • N. Deshmukh
    • 2
  • J. L. Ferreira
    • 11
  • M. Fisichella
    • 5
  • A. Foti
    • 3
  • G. Gallo
    • 1
    • 2
  • H. Garcia-Tecocoatzi
    • 14
    • 25
  • V. Greco
    • 1
    • 2
  • A. Hacisalihoglu
    • 2
    • 15
  • F. Iazzi
    • 5
    • 16
  • R. Introzzi
    • 5
    • 16
  • G. Lanzalone
    • 2
    • 17
  • J. A. Lay
    • 2
    • 10
  • F. La Via
    • 18
  • H. Lenske
    • 19
  • R. Linares
    • 11
  • G. Litrico
    • 2
  • F. Longhitano
    • 3
  • J. Lubian
    • 11
  • N. H. Medina
    • 4
  • D. R. Mendes
    • 11
  • M. Moralles
    • 20
  • A. Muoio
    • 2
  • A. Pakou
    • 21
  • H. Petrascu
    • 22
  • F. Pinna
    • 5
    • 16
  • S. Reito
    • 3
  • A. D. Russo
    • 2
  • G. Russo
    • 1
    • 3
  • G. Santagati
    • 2
  • E. Santopinto
    • 14
  • R. B. B. Santos
    • 23
  • O. Sgouros
    • 2
    • 21
  • M. A. G. da Silveira
    • 23
  • S. O. Solakci
    • 9
  • G. Souliotis
    • 24
  • V. Soukeras
    • 2
    • 21
  • A. Spatafora
    • 1
    • 2
  • D. Torresi
    • 2
  • R. Magana Vsevolodovna
    • 14
    • 25
  • A. Yildirim
    • 9
  • V. A. B. Zagatto
    • 11
  1. 1.Dipartimento di Fisica e AstronomiaUniversità di CataniaCataniaItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del SudCataniaItaly
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di CataniaCataniaItaly
  4. 4.Instituto de FisicaUniversidade de Sao PauloSao PauloBrazil
  5. 5.Istituto Nazionale di Fisica Nucleare, Sezione di TorinoTorinoItaly
  6. 6.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  7. 7.School of Physics and Astronomy Tel Aviv UniversityTel AvivIsrael
  8. 8.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  9. 9.Akdeniz UniversityAntalyaTurkey
  10. 10.Departamento de FAMNUniversidad de SevillaSevillaSpain
  11. 11.Instituto de FisicaUniversidade Federal FluminenseNiteroiBrazil
  12. 12.Stony Brook UniversityStony BrookUSA
  13. 13.LPC Caen, Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3CaenFrance
  14. 14.Istituto Nazionale di Fisica Nucleare, Sezione di GenovaGenovaItaly
  15. 15.Institute of Natural ScienceKaradeniz Teknik UniversitesiTrabzonTurkey
  16. 16.DISAT-Politecnico di TorinoTorinoItaly
  17. 17.Università degli Studi di Enna “Kore”EnnaItaly
  18. 18.CNR-IMM, Sezione di CataniaCataniaItaly
  19. 19.University of GiessenGiessenGermany
  20. 20.Instituto de Pesquisas Energeticas e Nucleares IPEN/CNENSao PauloBrazil
  21. 21.Department of Physics and HINPThe University of IoanninaIoanninaGreece
  22. 22.IFIN-HHBucarestRomania
  23. 23.Centro Universitario FEISao Bernardo do CampoBrazil
  24. 24.Laboratory of Physical Chemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
  25. 25.Dipartimento di Fisica dell’Università di GenovaGenovaItaly

Personalised recommendations