The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay

  • F. Cappuzzello
  • C. Agodi
  • M. Cavallaro
  • D. Carbone
  • S. Tudisco
  • D. Lo Presti
  • J. R. B. Oliveira
  • P. Finocchiaro
  • M. Colonna
  • D. Rifuggiato
  • L. Calabretta
  • D. Calvo
  • L. Pandola
  • L. Acosta
  • N. Auerbach
  • J. Bellone
  • R. Bijker
  • D. Bonanno
  • D. Bongiovanni
  • T. Borello-Lewin
  • I. Boztosun
  • O. Brunasso
  • S. Burrello
  • S. Calabrese
  • A. Calanna
  • E. R. Chávez Lomelí
  • G. D’Agostino
  • P. N. De Faria
  • G. De Geronimo
  • F. Delaunay
  • N. Deshmukh
  • J. L. Ferreira
  • M. Fisichella
  • A. Foti
  • G. Gallo
  • H. Garcia-Tecocoatzi
  • V. Greco
  • A. Hacisalihoglu
  • F. Iazzi
  • R. Introzzi
  • G. Lanzalone
  • J. A. Lay
  • F. La Via
  • H. Lenske
  • R. Linares
  • G. Litrico
  • F. Longhitano
  • J. Lubian
  • N. H. Medina
  • D. R. Mendes
  • M. Moralles
  • A. Muoio
  • A. Pakou
  • H. Petrascu
  • F. Pinna
  • S. Reito
  • A. D. Russo
  • G. Russo
  • G. Santagati
  • E. Santopinto
  • R. B. B. Santos
  • O. Sgouros
  • M. A. G. da Silveira
  • S. O. Solakci
  • G. Souliotis
  • V. Soukeras
  • A. Spatafora
  • D. Torresi
  • R. Magana Vsevolodovna
  • A. Yildirim
  • V. A. B. Zagatto
Review

Abstract.

The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. First experimental results obtained at the INFN-LNS laboratory for the 40Ca(18O,18Ne)40Ar reaction at 270MeV give an encouraging indication on the capability of the proposed technique to access relevant quantitative information. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer. The former is used for the acceleration of the required high resolution and low emittance heavy-ion beams and the latter is the large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the experimental resolution and sensitivity required for the accurate measurement of the DCE cross sections at forward angles. However, the tiny values of such cross sections and the resolution requirements demand beam intensities much larger than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities in this perspective is part of the NUMEN project and will be discussed in the article.

References

  1. 1.
    E. Caurier, J. Menendez, F. Nowacki, A. Poves, Phys. Rev. Lett. 100, 052503 (2008)ADSGoogle Scholar
  2. 2.
    J. Suhonen, M. Kortelainen, Int. J. Mod. Phys. E 17, 1 (2008)ADSGoogle Scholar
  3. 3.
    N.L. Vaquero, T.R. Rodriguez, J.L. Egido, Phys. Rev. Lett. 111, 142501 (2013)ADSGoogle Scholar
  4. 4.
    J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87, 014315 (2013)ADSGoogle Scholar
  5. 5.
    A.A. Kwiatkowski et al., Phys. Rev. C 89, 045502 (2014)ADSGoogle Scholar
  6. 6.
    H. Akimune et al., Phys. Lett. B 394, 23 (1997)ADSGoogle Scholar
  7. 7.
    J.P. Schiffer et al., Phys. Rev. Lett. 100, 112501 (2008)ADSGoogle Scholar
  8. 8.
    D. Frekers, Prog. Part. Nucl. Phys. 64, 281 (2010)ADSGoogle Scholar
  9. 9.
    C.J. Guess et al., Phys. Rev. C 83, 064318 (2011)ADSGoogle Scholar
  10. 10.
    S.J. Freeman, J.P. Schiffer, J. Phys. G: Nucl. Part. Phys. 39, 124004 (2012)ADSGoogle Scholar
  11. 11.
    J. Barea, J. Kotila, F. Iachello, Phys. Rev. Lett. 109, 042501 (2012)ADSGoogle Scholar
  12. 12.
    Report to the Nuclear Science Advisory Committee, Neutrinoless Double Beta Decay (2014)Google Scholar
  13. 13.
    J. Fujita, K. Ikeda, Nucl. Phys. 67, 145 (1965)Google Scholar
  14. 14.
    D.H. Wilkinson, Nucl. Phys. A 225, 365 (1974)ADSGoogle Scholar
  15. 15.
    J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 91, 034304 (2015)ADSGoogle Scholar
  16. 16.
    J. Suhonen, O. Civitarese, Phys. Lett. B 725, 153 (2013)ADSGoogle Scholar
  17. 17.
    A. Faessler, G.L. Fogli, E. Lisi, V. Rodin, A.M. Rotunno, F. Simkovic, J. Phys. G: Nucl. Part. Phys. 35, 075104 (2008)ADSGoogle Scholar
  18. 18.
    R.G.H. Robertson, Mod. Phys. Lett. A 28, 1350021 (2013)ADSGoogle Scholar
  19. 19.
    S. Dell’Oro, S. Marcocci, F. Vissani, Phys. Rev. D 90, 033005 (2014)ADSGoogle Scholar
  20. 20.
    J. Menendez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)ADSGoogle Scholar
  21. 21.
    J.D. Vergados, Phys. Rev. D 25, 914 (1982)ADSGoogle Scholar
  22. 22.
    A. Fazely, L.C. Liu, Phys. Rev. Lett. 57, 968 (1986)ADSGoogle Scholar
  23. 23.
    S. Mordechai et al., Phys. Rev. Lett. 61, 531 (1988)ADSGoogle Scholar
  24. 24.
    N. Auerbach et al., Ann. Phys. 192, 77 (1989)ADSGoogle Scholar
  25. 25.
    J. Blomgren et al., Phys. Lett. B 362, 34 (1995)ADSGoogle Scholar
  26. 26.
    F. Naulin et al., Phys. Rev. C 25, 1074 (1982)ADSGoogle Scholar
  27. 27.
    D.M. Drake et al., Phys. Rev. Lett. 45, 1765 (1980)ADSGoogle Scholar
  28. 28.
    D.R. Bes, O. Dragun, E.E. Maqueda, Nucl. Phys. A 405, 313 (1983)ADSGoogle Scholar
  29. 29.
    C.H. Dasso, A. Vitturi, Phys. Rev. C 34, 743 (1986)ADSGoogle Scholar
  30. 30.
    W. von Oertzen et al., Nucl. Phys. A 588, 129c (1995)ADSGoogle Scholar
  31. 31.
    F. Cappuzzello et al., Eur. Phys. J. A 51, 145 (2015)ADSGoogle Scholar
  32. 32.
    H. Matsubara et al., Few-Body Syst. 54, 1433 (2013)ADSGoogle Scholar
  33. 33.
    D.M. Brink, Phys. Lett. B 40, 37 (1972)ADSGoogle Scholar
  34. 34.
    F. Cappuzzello et al., J. Phys.: Conf. Ser. 630, 012018 (2015)Google Scholar
  35. 35.
    C. Agodi et al., Nucl. Part. Phys. Proc. 265-266, 28 (2015)Google Scholar
  36. 36.
    W.M. Visscher, R.A. Ferrell, Phys. Rev. 107, 781 (1957)ADSGoogle Scholar
  37. 37.
    S. Bloom, N. Glendenning, S. Mozkowski, Phys. Rev. Lett. 3, 98 (1959)ADSGoogle Scholar
  38. 38.
    C. Wong, J.D. Anderson, S.D. Bloom, J.W. McClure, B.D. Walker, Phys. Rev. 123, 598 (1961)ADSGoogle Scholar
  39. 39.
    J.D. Anderson, C. Wong, I.W. McClure, Phys. Rev. 126, 2170 (1962)ADSGoogle Scholar
  40. 40.
    R. Helmer, Can. J. Phys. 65, 588 (1987)ADSGoogle Scholar
  41. 41.
    D.E. Bainum et al., Phys. Rev. Lett. 44, 1751 (1980)ADSGoogle Scholar
  42. 42.
    F. Petrovich, W.G. Love, R.J. McCarthy, Phys. Rev. 21, 1718 (1980)ADSGoogle Scholar
  43. 43.
    C. Gaarde et al., Nucl. Phys. A 369, 258 (1981)ADSGoogle Scholar
  44. 44.
    D.J. Mercer et al., Phys. Rev. C 49, 3104 (1994)ADSGoogle Scholar
  45. 45.
    E. Sugarbaker et al., Phys. Rev. Lett. 65, 551 (1990)ADSGoogle Scholar
  46. 46.
    F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)ADSGoogle Scholar
  47. 47.
    W.P. Alford, B.M. Spicer, Adv. Nucl. Phys. 24, 1 (1998)Google Scholar
  48. 48.
    T.N. Taddeucci et al., Nucl. Phys. A 469, 125 (1987)ADSGoogle Scholar
  49. 49.
    Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)ADSGoogle Scholar
  50. 50.
    H. Ejiri, Phys. Rep. 338, 265 (2000)ADSGoogle Scholar
  51. 51.
    D. Frekers, Progr. Part. Nucl. Phys. 57, 217 (2006)ADSGoogle Scholar
  52. 52.
    K. Ikeda, S. Fujii, J.I. Fujita, Phys. Lett. 2, 169 (1962)ADSGoogle Scholar
  53. 53.
    K. Ikeda, S. Fujii, J.I. Fujita, Phys. Lett. 3, 271 (1963)ADSGoogle Scholar
  54. 54.
    D.E. Bainum et al., Phys. Rev. Lett. 44, 1751 (1980)ADSGoogle Scholar
  55. 55.
    M.C. Vetterli, O. Hausser, R. Abegg et al., Phys. Rev. C 40, 559 (1989)ADSGoogle Scholar
  56. 56.
    S.D. Bloom, C.D. Goodman, S.M. Grimes, R.F. Hausman Jr., Phys. Lett. B 107, 336 (1981)ADSGoogle Scholar
  57. 57.
    M. Fujiwaraa et al., Nucl. Instrum. Methods A 422, 484 (1999)ADSGoogle Scholar
  58. 58.
    Y. Fujita et al., Nucl. Instrum. Methods Phys. Res. B 126, 274 (1997)ADSGoogle Scholar
  59. 59.
    H. Fujita et al., Nucl. Instrum. Methods Phys. Res. A 484, 17 (2002)ADSGoogle Scholar
  60. 60.
    T. Wasaka et al., Nucl. Instrum. Methods A 482, 70 (2002)ADSGoogle Scholar
  61. 61.
    H. Okamura et al., Phys. Lett. B 345, 1 (1995)ADSGoogle Scholar
  62. 62.
    S. Rakers et al., Nucl. Instrum. Methods A 481, 253 (2002)ADSGoogle Scholar
  63. 63.
    H. Ohnuma et al., Phys. Rev. C 47, 648 (1992)ADSGoogle Scholar
  64. 64.
    H. Dohmann et al., Phys. Rev. C 78, 041602(R) (2008)ADSGoogle Scholar
  65. 65.
    E.-W. Grewe et al., Phys. Rev. C 78, 044301 (2008)ADSGoogle Scholar
  66. 66.
    H. Ejiri, J. Phys. Soc. Jpn. 81, 033201 (2012)ADSGoogle Scholar
  67. 67.
    M. Cavallaro et al., Phys. Rev. C 88, 054601 (2013)ADSGoogle Scholar
  68. 68.
    M. Cavallaro et al., Phys. Rev. Lett. 118, 012701 (2017)ADSGoogle Scholar
  69. 69.
    D. Carbone et al., Phys. Rev. C 95, 034603 (2017)ADSGoogle Scholar
  70. 70.
    M.J. Ermamatov et al., Phys. Rev. C 94, 024610 (2016)ADSGoogle Scholar
  71. 71.
    M.J. Ermamatov et al., Phys. Rev. C 96, 044603 (2017)ADSGoogle Scholar
  72. 72.
    H. Lenske, Nucl. Phys. A 482, 343 (1989)ADSGoogle Scholar
  73. 73.
    M. Toyama, Phys. Lett. B 38, 147 (1972)ADSGoogle Scholar
  74. 74.
    W.R. Wharton, P.T. Debecev, Phys. Rev. C 11, 1963 (1975)ADSGoogle Scholar
  75. 75.
    J.S. Winfield et al., Phys. Rev. C 33, 1333 (1986)ADSGoogle Scholar
  76. 76.
    H. Lenske, H.H. Wolter, H.G. Bohlen, Phys. Rev. Lett. 62, 1457 (1989)ADSGoogle Scholar
  77. 77.
    S. Nakayama et al., Phys. Lett. B 246, 342 (1990)ADSGoogle Scholar
  78. 78.
    F. Cappuzzello et al., Nucl. Phys. A 739, 30 (2004)ADSGoogle Scholar
  79. 79.
    C.A. Bertulani, Nucl. Phys. A 554, 493 (1993)ADSGoogle Scholar
  80. 80.
    H.G. Bohlen et al., Nucl. Phys. A 488, 89c (1988)ADSGoogle Scholar
  81. 81.
    W. von Oertzen, Nucl. Phys. A 482, 357c (1988)ADSGoogle Scholar
  82. 82.
    S. Nakayama et al., Phys. Rev. C 60, 047303 (1999)ADSGoogle Scholar
  83. 83.
    T. Annakkage et al., Nucl. Phys. A 648, 3 (1999)ADSGoogle Scholar
  84. 84.
    J. Cook et al., Phys. Rev. C 30, 1538 (1984)ADSGoogle Scholar
  85. 85.
    N.M. Clarke, J. Cook, Nucl. Phys. A 458, 137 (1986)ADSGoogle Scholar
  86. 86.
    F. Cappuzzello et al., Phys. Lett. B 516, 21 (2001)ADSGoogle Scholar
  87. 87.
    A. Etchegoyen et al., Phys. Rev. C 38, 2124 (1988)ADSGoogle Scholar
  88. 88.
    C. Nociforo et al., Eur. Phys. J. A 27, 283 (2006)Google Scholar
  89. 89.
    M. Cavallaro, Nuovo Cimento C 34, 1 (2011)Google Scholar
  90. 90.
    H. Ejiri, N. Soukouti, J. Suhonen, Phys. Lett. B 729, 27 (2014)ADSGoogle Scholar
  91. 91.
    L. Jokiniemi, J. Suhonen, H. Ejiri, Adv. High Energy Phys. 2016, 8417598 (2016)Google Scholar
  92. 92.
    J. Suhonen, O. Civitarese, Phys. Rep. 300, 123 (1998)ADSGoogle Scholar
  93. 93.
    N. Auerback et al., Phys. Rev. Lett. 59, 1076 (1987)ADSGoogle Scholar
  94. 94.
    J. Cerny, in Proceedings of the 3rd International Conference on Nuclei Far from Stability, Cargese, 1976 (CERN, 1976)Google Scholar
  95. 95.
    L.K. Fifield et al., Nucl. Phys. A 385, 505 (1982)ADSGoogle Scholar
  96. 96.
    K. Kisamori et al., Phys. Rev. Lett. 116, 052501 (2016)ADSGoogle Scholar
  97. 97.
    K. Takahisa, arXiv:1703.08264 (2017)Google Scholar
  98. 98.
    M. Takaki, RIKEN Accelerator Progress Report 47 (2014)Google Scholar
  99. 99.
    H. Sagawa, T. Uesaka, Phys. Rev. C 94, 064325 (2016)ADSGoogle Scholar
  100. 100.
    F. Cappuzzello et al., Eur. Phys. J. A 52, 167 (2016)ADSGoogle Scholar
  101. 101.
    P. Puppe et al., Phys. Rev. C 84, 051305 (2011)ADSGoogle Scholar
  102. 102.
    H. Ejiri et al., J. Phys. Soc. Jpn. 82, 044202 (2013)ADSGoogle Scholar
  103. 103.
    J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)ADSGoogle Scholar
  104. 104.
    L. Mandelstam, Ig. Tamm, J. Phys. USSR 9, 249 (1945)Google Scholar
  105. 105.
    J. Menéndez, N. Shimizu, K. Yako, arXiv:1712.08691v1Google Scholar
  106. 106.
    N. Shimizu, J. Menéndez, K. Yako, arXiv:1709:01088Google Scholar
  107. 107.
    A. Cunsolo et al., Eur. Phys. J. ST 150, 343 (2007)Google Scholar
  108. 108.
    M. Cavallaro et al., Eur. Phys. J. A 48, 59 (2012)ADSGoogle Scholar
  109. 109.
    D. Carbone et al., Eur. Phys. J. A 48, 60 (2012)ADSGoogle Scholar
  110. 110.
    M. Bondì et al., AIP Conf. Proc. 1595, 245 (2014)ADSGoogle Scholar
  111. 111.
    F. Cappuzzello et al., Nucl. Instrum. Methods A 621, 419 (2010)ADSGoogle Scholar
  112. 112.
    M. Cavallaro et al., Nucl. Instrum. Methods A 648, 46 (2011)ADSGoogle Scholar
  113. 113.
    F. Cappuzzello et al., Nucl. Instrum. Methods A 638, 74 (2011)ADSGoogle Scholar
  114. 114.
    M. Cavallaro et al., Nucl. Instrum. Methods A 637, 77 (2011)ADSGoogle Scholar
  115. 115.
    F. Cappuzzello et al., Nucl. Instrum. Methods A 763, 314 (2014)ADSGoogle Scholar
  116. 116.
    M. Cavallaro et al., PoS BORMIO2017, 015 (2017)Google Scholar
  117. 117.
    D. Rifuggiato, in Proceedings of Cyclotrons 2013, Vancouver, BC, Canada (CERN, 2014)Google Scholar
  118. 118.
    D. Pereira et al., Phys. Lett. B 710, 426 (2012)ADSGoogle Scholar
  119. 119.
    J.R.B. Oliveira et al., J. Phys. G 40, 105101 (2013)ADSGoogle Scholar
  120. 120.
    F. Cappuzzello et al., Eur. Phys. J. A 51, 169 (2016)ADSGoogle Scholar
  121. 121.
    A. Lazzaro et al., Nucl. Instrum. Methods A 591, 394 (2008)ADSGoogle Scholar
  122. 122.
    A. Lazzaro et al., Nucl. Instrum. Methods A 585, 136 (2008)ADSGoogle Scholar
  123. 123.
    A. Lazzaro et al., Nucl. Instrum. Methods A 570, 192 (2007)ADSGoogle Scholar
  124. 124.
    A. Lazzaro et al., Nucl. Instrum. Methods A 602, 494 (2009)ADSGoogle Scholar
  125. 125.
    F. Cappuzzello et al., Nat. Commun. 6, 6743 (2015)Google Scholar
  126. 126.
    V. Soukeras et al., Phys. Rev. C 91, 057601 (2015)ADSGoogle Scholar
  127. 127.
    D. Carbone et al., Phys. Rev. C 90, 064621 (2014)ADSGoogle Scholar
  128. 128.
    M. Cavallaro et al., Phys. Rev. C 93, 064323 (2016)ADSGoogle Scholar
  129. 129.
    D. Carbone et al., J. Phys.: Conf. Ser. 312, 082016 (2011)Google Scholar
  130. 130.
    C. Boiano et al., IEEE Trans. Nucl. Sci. 55, 3563 (2008)ADSGoogle Scholar
  131. 131.
    A. Cunsolo et al., Nucl. Instrum. Methods A 484, 56 (2002)ADSGoogle Scholar
  132. 132.
    C.D. Moak et al., Phys. Rev. Lett. 18, 41 (1967)ADSGoogle Scholar
  133. 133.
    H. Gauvin et al., Nucl. Instrum. Methods B 47, 339 (1990)ADSGoogle Scholar
  134. 134.
    K. Shima, N. Kuno, M. Yamanouchi, H. Tawara, At. Data Nucl. Data Tables 51, 173 (1992)ADSGoogle Scholar
  135. 135.
    D. Carbone, Eur. Phys. J. Plus 130, 143 (2015)Google Scholar
  136. 136.
    K. Makino, M. Berz, Nucl. Instrum. Methods A 427, 338 (1999)ADSGoogle Scholar
  137. 137.
    M. Berz, AIP Conf. Proc. 249, 456 (1991)ADSGoogle Scholar
  138. 138.
    M. Berz, K. Makino, CERN-76_13 (CERN, 1976)  https://doi.org/10.5170/CERN-1976-013
  139. 139.
    A. Lazzaro, PhD Thesis, University of Catania (2003)Google Scholar
  140. 140.
    G.R. Satchler, International Series Of Monographs On Physics, Vol. 68 (Clarendon, Oxford, UK, 1983)Google Scholar
  141. 141.
    H. Lenske, J. Bellone, M. Colonna, J.-A. Lay, in preparationGoogle Scholar
  142. 142.
    H. Lenske, HIDEX codeGoogle Scholar
  143. 143.
    F. Iachello, P.V. Isacker, The Interacting Boson-Fermion Model (Cambridge University, Cambridge, UK, 1991)Google Scholar
  144. 144.
    A. Arima, F. Iachello, Phys. Rev. Lett. 35, 1069 (1975)ADSGoogle Scholar
  145. 145.
    A. Arima, F. Iachello, Phys. Rev. Lett. 40, 385 (1978)ADSGoogle Scholar
  146. 146.
    H. Lenske, H.H. Wolter, H.G. Bohlen, Phys. Rev. Lett. 62, 1457 (1989)ADSGoogle Scholar
  147. 147.
    C. Brendel et al., Nucl. Phys. A 477, 162 (1988)ADSGoogle Scholar
  148. 148.
    H. Lenske, G. Schrieder, Eur. Phys. J. A 2, 41 (1998)ADSGoogle Scholar
  149. 149.
    F. Froemel, H. Lenske, U. Mosel, Nucl. Phys. A 723, 544 (2003)ADSGoogle Scholar
  150. 150.
    P. Konrad, H. Lenske, Eur. Phys. J. A 33, 291 (2007)ADSGoogle Scholar
  151. 151.
    N. Rocco, A. Lovato, O. Benhar, Phys. Rev. Lett. 116, 192501 (2016)ADSGoogle Scholar
  152. 152.
    O. Benhar, Nucl. Phys. News 26, 15 (2016)Google Scholar
  153. 153.
    J. Johanson et al., Nucl. Phys. A 712, 75 (2002)ADSGoogle Scholar
  154. 154.
    W. Brodowski et al., Phys. Rev. Lett. 88, 192301 (2002)ADSGoogle Scholar
  155. 155.
    J. Pätzold et al., Phys. Rev. C 67, 052202(R) (2003)ADSGoogle Scholar
  156. 156.
    E. Doroshkevich et al., Eur. Phys. J. A 18, 171 (2003)ADSGoogle Scholar
  157. 157.
    T. Skorodko et al., Eur. Phys. J. A 35, 317 (2008)ADSGoogle Scholar
  158. 158.
    T. Skorodko, Phys. Lett. B 679, 30 (2009)ADSGoogle Scholar
  159. 159.
    H. Clement et al., Int. J. Mod. Phys. A 20, 1747 (2005)ADSGoogle Scholar
  160. 160.
    S. Abd El-Bary et al., Eur. Phys. J. A 37, 267 (2008)ADSGoogle Scholar
  161. 161.
    S. Abd El-Samad et al., Eur. Phys. J. A 42, 159 (2009)ADSGoogle Scholar
  162. 162.
    T. Tsuboyama, F. Sai, N. Katayama, T. Kishida, S.S. Yamamoto, Phys. Rev. C 62, 034001 (2000)ADSGoogle Scholar
  163. 163.
    V.V. Sarantsev et al., Phys. At. Nucl. 70, 1885 (2007)Google Scholar
  164. 164.
    G. Agakishiev et al., Phys. Lett. B 750, 184 (2015)ADSGoogle Scholar
  165. 165.
    L. Alvarez-Ruso, E. Oset, E. Hernandez, Nucl. Phys. A 633, 519 (1998)ADSGoogle Scholar
  166. 166.
    X. Cao, B.S. Zou, H.S. Xu, Phys. Rev. C 81, 065201 (2010)ADSGoogle Scholar
  167. 167.
    Ian J. Thompson, Comput. Phys. Rep. 7, 167 (1988)ADSGoogle Scholar
  168. 168.
    B. Paes et al., Phys. Rev. C 96, 044612 (2017)ADSGoogle Scholar
  169. 169.
    R. Magana Vsevolodovna, E. Santopinto, J. Lubian, B. Paes, in preparationGoogle Scholar
  170. 170.
    T. Otskuka, A. Arima, I. Talmi, F. Iachello, Phys. Lett. B 76, 139 (1978)ADSGoogle Scholar
  171. 171.
    T. Otskuka, A. Arima, I. Talmi, F. Iachello, Nucl. Phys. A 309, 1 (1978)ADSGoogle Scholar
  172. 172.
    P.D. Duval, B.R. Barrett, Phys. Rev. Lett. 46, 1504 (1981)ADSGoogle Scholar
  173. 173.
    S. Pittel, P.D. Duval, B.R. Barrett, Ann. Phys. 144, 168 (1982)ADSGoogle Scholar
  174. 174.
    A. Frank, P. Van Isacker, Phys. Rev. C 26, 1661 (1982)ADSGoogle Scholar
  175. 175.
    P.O. Lipas, M. Koskinen, H. Harter, R. Nojarov, A. Faessler, Nucl. Phys. A 509, 509 (1990)ADSGoogle Scholar
  176. 176.
    J. Barea, F. Iachello, Phys. Rev. C 79, 044301 (2009)ADSGoogle Scholar
  177. 177.
    L. Calabretta, A. Calanna, G. D’Agostino, D. Rifuggiato, in Proceedings of Cyclotrons 2016, Zurich, Switzerland (JACoW, 2017)Google Scholar
  178. 178.
    L. Calabretta, A. Calanna, G. Cuttone, G. D’Agostino, D. Rifuggiato, A.D. Russo, Mod. Phys. Lett. A 32, 1740009 (2017)ADSGoogle Scholar
  179. 179.
    G. D’Agostino, L. Calabretta, A. Calanna, D. Rifuggiato, in Proceedings of Cyclotrons 2016, Zurich, Switzerland (JACoW, 2017)Google Scholar
  180. 180.
    A. Calanna, Nuovo Cimento C 40, 101 (2017)ADSGoogle Scholar
  181. 181.
    K. Shima et al., At. Data Nucl. Data Tables 51, 173 (1992)ADSGoogle Scholar
  182. 182.
    G. Gallo, in Proceedings of Cyclotrons 2016, Zurich, Switzerland (JACoW, 2017)Google Scholar
  183. 183.
    S.S. Tomic, E.V. Samsonov, Phys. Rev. E 65, 036504 (2002)ADSGoogle Scholar
  184. 184.
    L. Calabretta, A. Calanna, G. D’Agostino, D. Rifuggiato, A.D. Russo, in Proceedings of IPAC 2017 (JACOW, 2017) accelconf.web.cern.ch/AccelConf/ipac2017/ papers/wepva053.pdfGoogle Scholar
  185. 185.
    A. Radovinsky, L. Calabretta, J. Minervini, A. Zhukovsky, P. Michael, A. Calanna, IEEE Trans. Appl. Superconduct. 26, 4101005 (2016)Google Scholar
  186. 186.
    A. Calanna, L. Calabretta, D. Rifuggiato, G. D’Agostino, G. Gallo, G. Costa, L. Allegra, A.D. Russo, in IPAC 2017 Conference proceedings http://iopscience.iop.org/issue/1742-6596/874/1
  187. 187.
    F. Iazzi et al., WIT Trans. Eng. Sci. 116, 61 (2017)Google Scholar
  188. 188.
    Los Alamos, User’s Guide for the POISSON/SUPERFISH group of codes, 1987, LA-UR-87-115Google Scholar
  189. 189.
    F. Sauli, Nucl. Instrum. Methods A 805, 2 (2016)ADSGoogle Scholar
  190. 190.
    R. Chechik et al., Nucl. Instrum. Methods A 535, 303 (2004)ADSGoogle Scholar
  191. 191.
    A. Breskin et al., Nucl. Instrum. Methods A 598, 107 (2009)ADSGoogle Scholar
  192. 192.
    G. Bencivenni et al., IEEE Trans. Nucl. Sci. 49, 3242 (2002)ADSGoogle Scholar
  193. 193.
    M. Cortesi et al., Rev. Sci. Instrum. 88, 013303 (2017)ADSGoogle Scholar
  194. 194.
    J. Pouthas et al., Nucl. Instrum. Methods A 357, 418 (1995)ADSGoogle Scholar
  195. 195.
    A. Musumarra et al., Nucl. Instrum. Methods A 370, 558 (1996)ADSGoogle Scholar
  196. 196.
    S. Aiello et al., AIP Conf. Proc. 495, 353 (1999)ADSGoogle Scholar
  197. 197.
    R. Bougault et al., Eur. Phys. J. A 50, 47 (2014)ADSGoogle Scholar
  198. 198.
    G.F. Knoll, Radiation Detection and Measurements (John Wiley & Sons, Inc., 2000)Google Scholar
  199. 199.
    J. Lu et al., Nucl. Instrum. Methods A 471, 374 (2001)ADSGoogle Scholar
  200. 200.
    D.G. Sarantites et al., Nucl. Instrum. Methods A 790, 42 (2015)ADSGoogle Scholar
  201. 201.
    J.W. Palmour et al., Physica B 185, 461 (1993)ADSGoogle Scholar
  202. 202.
    A.A. Lebedev et al., Fiz. Tekh. Poluprovodnikov 38, 129 (2004)Google Scholar
  203. 203.
    A. Muoio et al., EPJ Web of Conferences 117, 10006 (2016)Google Scholar
  204. 204.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, 1969)Google Scholar
  205. 205.
    M. Moll, Nucl. Instrum. Methods A 511, 97 (2003)ADSGoogle Scholar
  206. 206.
    G. Raciti et al., Nucl. Instrum. Methods A 834, 784 (2010)Google Scholar
  207. 207.
    G. Lioliou et al., Nucl. Instrum. Methods A 840, 145 (2016)ADSGoogle Scholar
  208. 208.
    X. Zhang et al., IEEE Trans. Nucl. Sci. 60, 2352 (2013)ADSGoogle Scholar
  209. 209.
    S. Tudisco, in preparationGoogle Scholar
  210. 210.
  211. 211.
    D. Carbone, M. Cavallaro, C. Agodi, F. Cappuzzello, L. Cosentino, P. Finocchiaro for the NUMEN Collaboration, Results Phys. 6, 863 (2016)ADSGoogle Scholar
  212. 212.
    C. Boiano, in 2008 IEEE Nuclear Science Symposium Conference Record (IEEE, 2008) p. 2068Google Scholar
  213. 213.
    M. Cavallaro et al., Nucl. Instrum. Methods A 700, 65 (2013)ADSGoogle Scholar
  214. 214.
    D. Carbone, Nucl. Instrum. Methods A, in press  https://doi.org/10.1016/j.nima.2017.10.095
  215. 215.
    G. Miersch, D. Habs, J. Kenntner, D. Schwalm, A. Wolf, Nucl. Instrum. Methods A 369, 277 (1996)ADSGoogle Scholar
  216. 216.
    Liyuan Zhang, Rihua Mao, Ren-Yuan Zhu, in 2009 IEEE Nuclear Science Symposium Conference Record (IEEE, 2009)Google Scholar
  217. 217.
    L. Yi et al., Chin. Phys. C 39, 106003 (2015)ADSGoogle Scholar
  218. 218.
    C. Rossi Alvarez, Nuovo Cimento A 111, 601 (1998)ADSGoogle Scholar
  219. 219.
    G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007)ADSGoogle Scholar
  220. 220.
    G. De Geronimo, J. Fried, S. Li et al., IEEE Trans. Nucl. Sci. 60, 2314 (2013)ADSGoogle Scholar
  221. 221.
    National Instruments Website: www.ni.com
  222. 222.
    ATLAS Collaboration, New small wheel technical design report, CERN-LHCC-2013-006. ATLAS-TDR-020, Geneva, June 2013Google Scholar
  223. 223.
    G.F. Marchioro, P. Moreira, E. Noah, W. Snoeys, T. Calin, Total dose and Single Event Effects (SEE) in a 0.25 m CMOS technology, in Proceedings of the Fourth Workshop on Electronics for LHC Experiments (LEB ’98), Sep. 1998, Roma, Italy (CERN, 1998)Google Scholar
  224. 224.
    R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389, 81 (1997)ADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • F. Cappuzzello
    • 1
    • 2
  • C. Agodi
    • 2
  • M. Cavallaro
    • 2
  • D. Carbone
    • 2
  • S. Tudisco
    • 2
  • D. Lo Presti
    • 1
    • 3
  • J. R. B. Oliveira
    • 4
  • P. Finocchiaro
    • 2
  • M. Colonna
    • 2
  • D. Rifuggiato
    • 2
  • L. Calabretta
    • 2
  • D. Calvo
    • 5
  • L. Pandola
    • 2
  • L. Acosta
    • 6
  • N. Auerbach
    • 7
  • J. Bellone
    • 1
    • 2
  • R. Bijker
    • 8
  • D. Bonanno
    • 3
  • D. Bongiovanni
    • 2
  • T. Borello-Lewin
    • 4
  • I. Boztosun
    • 9
  • O. Brunasso
    • 5
  • S. Burrello
    • 2
    • 10
  • S. Calabrese
    • 1
    • 2
  • A. Calanna
    • 2
  • E. R. Chávez Lomelí
    • 6
  • G. D’Agostino
    • 1
    • 2
  • P. N. De Faria
    • 11
  • G. De Geronimo
    • 12
  • F. Delaunay
    • 5
    • 13
  • N. Deshmukh
    • 2
  • J. L. Ferreira
    • 11
  • M. Fisichella
    • 5
  • A. Foti
    • 3
  • G. Gallo
    • 1
    • 2
  • H. Garcia-Tecocoatzi
    • 14
    • 25
  • V. Greco
    • 1
    • 2
  • A. Hacisalihoglu
    • 2
    • 15
  • F. Iazzi
    • 5
    • 16
  • R. Introzzi
    • 5
    • 16
  • G. Lanzalone
    • 2
    • 17
  • J. A. Lay
    • 2
    • 10
  • F. La Via
    • 18
  • H. Lenske
    • 19
  • R. Linares
    • 11
  • G. Litrico
    • 2
  • F. Longhitano
    • 3
  • J. Lubian
    • 11
  • N. H. Medina
    • 4
  • D. R. Mendes
    • 11
  • M. Moralles
    • 20
  • A. Muoio
    • 2
  • A. Pakou
    • 21
  • H. Petrascu
    • 22
  • F. Pinna
    • 5
    • 16
  • S. Reito
    • 3
  • A. D. Russo
    • 2
  • G. Russo
    • 1
    • 3
  • G. Santagati
    • 2
  • E. Santopinto
    • 14
  • R. B. B. Santos
    • 23
  • O. Sgouros
    • 2
    • 21
  • M. A. G. da Silveira
    • 23
  • S. O. Solakci
    • 9
  • G. Souliotis
    • 24
  • V. Soukeras
    • 2
    • 21
  • A. Spatafora
    • 1
    • 2
  • D. Torresi
    • 2
  • R. Magana Vsevolodovna
    • 14
    • 25
  • A. Yildirim
    • 9
  • V. A. B. Zagatto
    • 11
  1. 1.Dipartimento di Fisica e AstronomiaUniversità di CataniaCataniaItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del SudCataniaItaly
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di CataniaCataniaItaly
  4. 4.Instituto de FisicaUniversidade de Sao PauloSao PauloBrazil
  5. 5.Istituto Nazionale di Fisica Nucleare, Sezione di TorinoTorinoItaly
  6. 6.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  7. 7.School of Physics and Astronomy Tel Aviv UniversityTel AvivIsrael
  8. 8.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico
  9. 9.Akdeniz UniversityAntalyaTurkey
  10. 10.Departamento de FAMNUniversidad de SevillaSevillaSpain
  11. 11.Instituto de FisicaUniversidade Federal FluminenseNiteroiBrazil
  12. 12.Stony Brook UniversityStony BrookUSA
  13. 13.LPC Caen, Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3CaenFrance
  14. 14.Istituto Nazionale di Fisica Nucleare, Sezione di GenovaGenovaItaly
  15. 15.Institute of Natural ScienceKaradeniz Teknik UniversitesiTrabzonTurkey
  16. 16.DISAT-Politecnico di TorinoTorinoItaly
  17. 17.Università degli Studi di Enna “Kore”EnnaItaly
  18. 18.CNR-IMM, Sezione di CataniaCataniaItaly
  19. 19.University of GiessenGiessenGermany
  20. 20.Instituto de Pesquisas Energeticas e Nucleares IPEN/CNENSao PauloBrazil
  21. 21.Department of Physics and HINPThe University of IoanninaIoanninaGreece
  22. 22.IFIN-HHBucarestRomania
  23. 23.Centro Universitario FEISao Bernardo do CampoBrazil
  24. 24.Laboratory of Physical Chemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
  25. 25.Dipartimento di Fisica dell’Università di GenovaGenovaItaly

Personalised recommendations