New anisotropic fluid spheres from embedding

Regular Article - Theoretical Physics
  • 25 Downloads

Abstract.

The embedding of the manifold into a 5-dimensional flat spacetime leads to a relationship between the gravitational metric potentials. The embedding condition is solved to obtain a new exact solution for an anisotropic matter distribution. We show that the potentials are well behaved, the matter variables have realistic profiles and the solution can be utilized to construct relativistic compact fluid spheres. A detailed investigation of the astrophysical objects 4U 1538-52, Her X-1 and SAX J1808.4-3658 is undertaken. The predicted radii generated through the observed masses for our models are consistent with the above astrophysical objects and indicate that the new exact solution represents compact spheres. The study reveals that complicated geometries arise from embedding and they are physically relevant in the study of observed compact bodies.

References

  1. 1.
    M. Malaver, World Sci. News 36, 1 (2016)Google Scholar
  2. 2.
    P. Mafa Takisa, S.D. Maharaj, Astrophys. Space Sci. 361, 262 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    S.D. Maharaj, D. Kileba Matondo, P. Mafa Takisa, Int. J. Mod. Phys. D 26, 1750014 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    S.K. Maurya, A. Banerjee, S. Hansraj, Phys. Rev. D 97, 044022 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    J. Jeans, Mon. Not. R. Astron. Soc. 82, 122 (1922)ADSCrossRefGoogle Scholar
  6. 6.
    R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Dev, M. Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002)CrossRefGoogle Scholar
  9. 9.
    K. Dev, M. Gleiser, Gen. Relativ. Gravit. 35, 1435 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    R. Sharma, B.S. Ratanpal, Int. J. Mod. Phys. D 22, 1350074 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S.A. Ngubelanga, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 357, 74 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    M.H. Murad, S. Fatema, Eur. Phys. J. C 75, 533 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M.H. Murad, S. Fatema, Eur. Phys. J. Plus 130, 3 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    M.H. Murad, Astrophys. Space Sci. 361, 20 (2016)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers, E. Herlt, Exact Solution to Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)Google Scholar
  16. 16.
    S.K. Maurya, Y.K. Gupta, B. Dayanandan, S. Ray, Eur. Phys. J. C 76, 266 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    S.K. Maurya, Y.K. Gupta, S. Ray, D. Deb, Eur. Phys. J. C 76, 693 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S.K. Maurya, Y.K. Gupta, T.T. Smitha, F. Rahaman, Eur. Phys. J. A 52, 191 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    S.K. Maurya, Y.K. Gupta, S. Ray, D. Deb, Eur. Phys. J. C 77, 45 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    P. Bhar, S.K. Maurya, Y.K. Gupta, T. Manna, Eur. Phys. J. A 52, 312 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    K.N. Singh, P. Bhar, N. Pant, Astrophys. Space Sci. 361, 339 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    K.N. Singh, N. Pant, Eur. Phys. J. C 76, 524 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    T. Gangopadhyay, S. Ray, X.-D. Li, J. Dey, M. Dey, Mon. Not. R. Astron. Soc. 431, 3216 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    M. Kohler, K.L. Chao, Z. Naturforsch. Ser. A 20, 1537 (1965)ADSGoogle Scholar
  25. 25.
    K. Schwarzschild, Sitz. Deut. Akad. Wiss. Math.-Phys. Berlin 24, 424 (1916)Google Scholar
  26. 26.
    K. Lake, Phys. Rev. D 67, 104015 (2003)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    C.W. Misner, D.H. Sharp, Phys. Rev. B 136, 571 (1964)ADSCrossRefGoogle Scholar
  28. 28.
    H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)ADSGoogle Scholar
  29. 29.
    L. Herrera, Phys. Lett. A 165, 206 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    A. Di Prisco, E. Fuenmayor, L. Herrera, V. Varela, Phys. Lett. A 195, 23 (1994)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    L. Herrera, E. Fuenmayor, P. Leon, Phys. Rev. D 93, 024047 (2016)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)ADSCrossRefGoogle Scholar
  33. 33.
    M.K. MaK, P.N. Dobson, T. Harko, Europhys. Lett. 55, 310 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    P. Haensel, J.L. Zdunik, R. Schaefer, Astron. Astrophys. 160, 121 (1986)ADSGoogle Scholar
  36. 36.
    F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    M.A. Perez-Garcia, J. Silk, J.R. Stone, Phys. Rev. Lett. 105, 141101 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    H. Rodrigues, S.B. Duarte, J.C.T. de Oliveira, Astrophys. J. 730, 31 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    G.H. Bordbar, A.R. Peivand, Res. Astron. Astrophys. 11, 851 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    X.-D. Li, Z.-G. Dai, Z.-R. Wang, Astron. Astrophys. 303, L1 (1995)ADSGoogle Scholar
  41. 41.
    I. Bombaci, Phys. Rev. C 55, 1587 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    M. Dey, I. Bombaci, J. Dey, S. Ray, B.C. Samanta, Phys. Lett. B 438, 123 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    X.-D. Li, I. Bombaci, M. Dey, J. Dey, E.P.J. van den Heuvel, Phys. Rev. Lett. 83, 3776 (1999)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical and Physical Sciences, College of Arts and ScienceUniversity of NizwaNizwaOman
  2. 2.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations