Advertisement

Gravitational collapse in a cylindrical symmetric vacuum space-time and the naked singularity

  • Faizuddin Ahmed
  • Farook Rahaman
Regular Article - Theoretical Physics

Abstract.

We construct a cylindrical symmetry vacuum solution of the Einstein field equations, regular everywhere except on the symmetry axis where it possesses a naked curvature singularity. The geodesics motion of free test particles near the singularity, geodesic expansion to understand the nature of singularity, and the C-energy of the vacuum metric, will be discussed. Finally, the physical interpretation of this solution, based on the study of the equation of the geodesics deviation, will be presented.

References

  1. 1.
    D. Christodoulou, Commun. Math. Phys. 93, 171 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    A. Papapetrou, in A Random Walk in Relativity and Gravitation, edited by N. Dadhich (New York, Wiley, 1985)Google Scholar
  3. 3.
    P.S. Joshi, Gravitational Collapse and Spacetime Singularities (Cambridge University Press, Cambridge, 2008)Google Scholar
  4. 4.
    R. Penrose, Nuovo Cimento 1, 252 (1969)Google Scholar
  5. 5.
    R. Penrose, Singularities and time-asymmetry, in General Relativity: An Einstein Centenary Survey, edited by S. Hawking (Cambridge University Press, Cambridge, 1979)Google Scholar
  6. 6.
    K.S. Thorne, in Magic without Magic: John Archibald Wheeler, edited by J.R. Klauder (Freeman and Co., San Francisco, 1972)Google Scholar
  7. 7.
    S.A. Hayward, Class. Quantum Grav. 17, 1749 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    T.A. Apostolatos, K.S. Thorne, Phys. Rev. D 46, 2435 (1992)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Echeverria, Phys. Rev. D 47, 2271 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    T. Chiba, Prog. Theor. Phys. 95, 321 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Melvin, Phys. Lett. 8, 65 (1964)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    K.S. Thorne, Phys. Rev. 138, B251 (1965)ADSCrossRefGoogle Scholar
  13. 13.
    M.A. Melvin, Phys. Rev. 139, B225 (1965)ADSCrossRefGoogle Scholar
  14. 14.
    T.A. Morgan, Gen. Rel. Gravit. 4, 273 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    T. Piran, Phys. Rev. Lett. 41, 1085 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    H. Bondi, Proc. R. Soc. London A 427, 259 (1990)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    P.S. Letelier, A. Wang, Phys. Rev. D 49, 5105 (1994)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J.M.M. Senovilla, R. Vera, Class. Quantum Grav. 17, 2843 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    P.R.C.T. Periera, A. Wang, Phys. Rev. D 62, 124001 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    S.M.C.V. Goncalves, S. Jhingan, Int. J. Mod. Phys. D 11, 1469 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    S.M.C.V. Goncalves, Phys. Rev. D 65, 084045 (2002)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    B.C. Nolan, Phys. Rev. D 65, 104006 (2002)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Wang, Phys. Rev. D 68, 064006 (2003)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Wang, Phys. Rev. D 72, 108501 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    K. Nakao, Y. Morisawa, Class Quantum Grav. 21, 2101 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    K. Nakao, Y. Morisawa, Prog. Theor. Phys. 113, 73 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    K. Nakao, Y. Morisawa, Phys. Rev. D 71, 124007 (2005)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Z. Ahmad, B. Imtiaz, Braz. J. Phys. 43, 57 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    D. Sarma, F. Ahmed, M. Patgiri, Adv. High Energy Phys. 2016, 2546186 (2016)CrossRefGoogle Scholar
  30. 30.
    F. Ahmed, Adv. High Energy Phys. 2017, 7943649 (2017)Google Scholar
  31. 31.
    F. Ahmed, Adv. High Energy Phys. 2017, 3587018 (2017)Google Scholar
  32. 32.
    F. Ahmed, Prog. Theor. Exp. Phys. 2017, 083E03 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Harvey, Class. Quantum Grav. 7, 715 (1990)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    V.V. Narlikar, K.R. Karmakar, Proc. Indian. Acad. Sci. A 29, 91 (1948)Google Scholar
  35. 35.
    T.P. Singh, Phys. Rev. D 58, 024004 (1998)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    F.J. Tipler, Phys. Lett. A 64, 8 (1977)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    C.J.S. Clarke, A. Krolak, J. Geom. Phys. 2, 127 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    A. Krolak, J. Math. Phys. 28, 138 (1987)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions to Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ajmal College of Arts and ScienceDhubriIndia
  2. 2.Department of MathematicsJadavpur UniversityKolkataIndia

Personalised recommendations