Advertisement

Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

  • Swatantra Kumar Tiwari
  • Raghunath Sahoo
Regular Article - Theoretical Physics
  • 45 Downloads

Abstract.

The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at \(\sqrt{s_{NN}} = 2.76\) TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing ET/Nch and it could be one of the possible parameters to explain the rise observed in ET/Nch from RHIC to LHC energies. Predictions are made for ET/Nch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV at the Large Hadron Collider.

References

  1. 1.
    BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)CrossRefGoogle Scholar
  2. 2.
    B.B. Back et al., Nucl. Phys. A 757, 28 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    G. Policastro, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 87, 081601 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    CMS Collaboration (V. Khachatryan et al.), Phys. Lett. B 765, 193 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 072301 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. Cleymans, R. Sahoo, D.P. Mahapatra, D.K. Srivastava, S. Wheaton, Phys. Lett. B 660, 172 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    R. Sahoo, A.N. Mishra, Int. J. Mod. Phys. E 23, 1450024 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    R. Sahoo, A.N. Mishra, N.K. Behera, B.K. Nandi, Adv. High Energy Phys. 2015, 612390 (2015) and references thereinCrossRefGoogle Scholar
  11. 11.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    D. Prorok, Eur. Phys. J. A 24, 93 (2005)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Prorok, Eur. Phys. J. A 26, 277 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    D. Prorok, Phys. Rev. C 75, 014903 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    M. Mishra, C.P. Singh, Phys. Rev. C 78, 024910 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S.K. Tiwari, C.P. Singh, Adv. High Energy Phys. 2013, 805413 (2013)CrossRefGoogle Scholar
  17. 17.
    S.K. Tiwari, C.P. Singh, J. Phys. Conf. Ser. 509, 012097 (2014)CrossRefGoogle Scholar
  18. 18.
    S.K. Tiwari, P.K. Srivastava, C.P. Singh, J. Phys. G 40, 045102 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 94, 034903 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    STAR Collaboration (J. Adams et al.), Phys. Rev. C 70, 054907 (2004)CrossRefGoogle Scholar
  21. 21.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 71, 034908 (2005) 71CrossRefGoogle Scholar
  22. 22.
    F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    X. Yin, C.M. Ko, Y. Sun, L. Zhu, Phys. Rev. C 95, 054913 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    K. Yagi, T. Hatsuda, Y. Miake, Quark-gluon Plasma: From Big Bang to Little Bang, in Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., Vol. 23 (Cambridge University Press, 2005)Google Scholar
  25. 25.
    D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    S.K. Tiwari, P.K. Srivastava, C.P. Singh, Phys. Rev. C 85, 014908 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 96, 044904 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    STAR Collaboration (B.I. Abelev et al.), Phys. Lett. B 655, 104 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 97, 152301 (2006)CrossRefGoogle Scholar
  30. 30.
    ALICE Collaboration (B.B. Abelev et al.), Phys. Lett. B 736, 196 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, N. Sharma, Adv. High Energy Phys. 2015, 349013 (2015) and references thereinCrossRefGoogle Scholar
  32. 32.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. Lett. 109, 152303 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    K.J. Eskola, K. Kajantie, P.V. Ruuskanen, K. Tuominen, Nucl. Phys. B 570, 379 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    BRAHMS Collaboration (I. Arsene et al.), Phys. Rev. C 72, 014908 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C 71, 054901 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    U.W. Heinz, G. Kestin, Eur. Phys. J. ST 155, 75 (2008)CrossRefGoogle Scholar
  38. 38.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 112301 (2004)CrossRefGoogle Scholar
  39. 39.
    J. Cleymans, K. Redlich, Phys. Rev. Lett. 81, 5284 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    P. Braun-Munzinger, J. Stachel, J. Phys. G 28, 1971 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    A. Tawfik, J. Phys. G 31, S1105 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    J. Cleymans, R. Sahoo, D.P. Mahapatra, D.K. Srivastava, S. Wheaton, J. Phys. G 35, 104147 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    A.N. Mishra, R. Sahoo, E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 74, 3147 (2014) 75ADSCrossRefGoogle Scholar
  45. 45.
    E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 94, 011501 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 93, 054046 (2016) 93ADSCrossRefGoogle Scholar
  47. 47.
    ALICE Collaboration (E. Abbas et al.), Phys. Lett. B 726, 610 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    CMS Collaboration (S. Chatrchyan et al.), JHEP 08, 141 (2011)ADSGoogle Scholar
  49. 49.
    ATLAS Collaboration (G. Aad et al.), Phys. Lett. B 710, 363 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252301 (2010)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Discipline of Physics, School of Basic SciencesIndian Institute of Technology Indore, SimrolIndoreIndia

Personalised recommendations