Advertisement

Feasibility of constraining the curvature parameter of the symmetry energy using elliptic flow data

  • M. D. Cozma
Regular Article - Theoretical Physics

Abstract.

A QMD transport model that employs a modified momentum dependent interaction (MDI2) potential, supplemented by a phase-space coalescence model fitted to FOPI experimental multiplicities of free nucleons and light clusters is used to study the density dependence of the symmetry energy above the saturation point by a comparison with experimental elliptic flow ratios measured by the FOPI-LAND and ASYEOS Collaborations in 197Au + 197Au collisions at 400 MeV/nucleon impact energy. A previous calculation using the same model has proven that neutron-to-proton and neutron-to-charged-particles elliptic flow ratios probe on average different densities allowing in principle the extraction of both the slope L and curvature \(K_{sym}\) parameters of the symmetry energy. To make use of this result a Gogny interaction inspired potential is modified by the addition of a density dependent, momentum independent term, while enforcing a close description of the empirical nucleon optical potential, allowing independent modifications of L and Ksym. Comparing theoretical predictions with experimental data for neutron-to-proton and neutron-to-charged-particles elliptic flow ratios the following constraint is extracted: \(L = 85 \pm 22({\rm exp}) \pm 20({\rm th}) \pm 12({\rm sys})\) MeV and \(K_{sym} = 96 \pm 315({\rm exp}) \pm 170({\rm th}) \pm 166({\rm sys})\) MeV. Theoretical errors include effects due to uncertainties in the isoscalar part of the equation of state, value of the isovector neutron-proton effective mass splitting, in-medium effects on the elastic nucleon-nucleon cross-sections, Pauli blocking algorithm variants and scenario considered for the conservation of the total energy of the system. Systematical uncertainties are generated by the inability of the transport model to reproduce experimental light-cluster-to-proton multiplicity ratios. A value for L free of systematical theoretical uncertainties can be extracted from the neutron-to-proton elliptic flow ratio alone: \( L = 84 \pm 30({\rm exp}) \pm 19({\rm th})\) MeV. It is demonstrated that elliptic flow ratios reach a maximum sensitivity on the \(K_{sym}\) parameter in heavy-ion collisions of about 250 MeV/nucleon impact energy, allowing a reduction of its experimental component of uncertainty to about 150 MeV.

References

  1. 1.
    B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    M. Baldo, G.F. Burgio, Prog. Part. Nucl. Phys. 91, 203 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. C 72, 064309 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M.A. Famiano, T. Liu, W.G. Lynch, A.M. Rogers, M.B. Tsang, M.S. Wallace, R.J. Charity, S. Komarov, D.G. Sarantites, L.G. Sobotka, Phys. Rev. Lett. 97, 052701 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    A. Klimkiewicz et al., Phys. Rev. C 76, 051603 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    L. Trippa, G. Colo, E. Vigezzi, Phys. Rev. C 77, 061304 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    M. Centelles, X. Roca-Maza, X. Viñas, M. Warda, Phys. Rev. Lett. 102, 122502 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A. Carbone, G. Colo, A. Bracco, L.G. Cao, P.F. Bortignon, F. Camera, O. Wieland, Phys. Rev. C 81, 041301 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    X. Roca-Maza, M. Centelles, X. Viñas, M. Warda, Phys. Rev. Lett. 106, 252501 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Brown, Phys. Rev. Lett. 111, 232502 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    P. Danielewicz, J. Lee, Nucl. Phys. A 922, 1 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    I. Tews, T. Krüger, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 110, 032504 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    T. Krüger, I. Tews, K. Hebeler, A. Schwenk, Phys. Rev. C 88, 025802 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93, 054314 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    C. Drischler, A. Carbone, K. Hebeler, A. Schwenk, Phys. Rev. C 94, 054307 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    I. Vidaña, A. Polls, A. Ramos, L. Engvik, M. Hjorth-Jensen, Phys. Rev. C 62, 035801 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    J. Schaffner-Bielich, M. Hanauske, H. Stöcker, W. Greiner, Phys. Rev. Lett. 89, 171101 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    H. Djapo, B.J. Schaefer, J. Wambach, Phys. Rev. C 81, 035803 (2010)ADSGoogle Scholar
  24. 24.
    S. Shlomo, D.H. Youngblood, Phys. Rev. C 47, 529 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    S. Yoshida, H. Sagawa, Phys. Rev. C 73, 044320 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    H. Sagawa, S. Yoshida, G.M. Zeng, J.Z. Gu, X.Z. Zhang, Phys. Rev. C 76, 034327 (2007) 77ADSCrossRefGoogle Scholar
  27. 27.
    J. Piekarewicz, M. Centelles, Phys. Rev. C 79, 054311 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    L.W. Chen, B.J. Cai, C.M. Ko, B.A. Li, C. Shen, J. Xu, Phys. Rev. C 80, 014322 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    T. Li et al., Phys. Rev. C 81, 034309 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    J.R. Stone, N.J. Stone, S.A. Moszkowski, Phys. Rev. C 89, 044316 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    J. Decharge, D. Gogny, Phys. Rev. C 21, 1568 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A.W. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    B.A. Li, Nucl. Phys. A 708, 365 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 650, 344 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    L.W. Chen, C.M. Ko, B.A. Li, Nucl. Phys. A 729, 809 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    B.A. Li, G.C. Yong, W. Zuo, Phys. Rev. C 71, 014608 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    B.A. Li, Phys. Rev. Lett. 88, 192701 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    P. Russotto et al., Phys. Lett. B 697, 471 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    M.D. Cozma, Phys. Lett. B 700, 139 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    FOPI Collaboration (Y. Leifels et al.), Phys. Rev. Lett. 71, 963 (1993)CrossRefGoogle Scholar
  43. 43.
    FOPI Collaboration (D. Lambrecht et al.), Z. Phys. A 350, 115 (1994)CrossRefGoogle Scholar
  44. 44.
    P. Russotto et al., Phys. Rev. C 94, 034608 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    M.D. Cozma, Y. Leifels, W. Trautmann, Q. Li, P. Russotto, Phys. Rev. C 88, 044912 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Wang, C. Guo et al., Phys. Rev. C 89, 044603 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    C.B. Das, S.D. Gupta, C. Gale, B.A. Li, Phys. Rev. C 67, 034611 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    J. Xu, L.W. Chen, B.A. Li, Phys. Rev. C 91, 014611 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 848, 366 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 876, 1 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    M.D. Cozma, Phys. Lett. B 753, 166 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    M.D. Cozma, Phys. Rev. C 95, 014601 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    D.T. Khoa, N. Ohtsuka, M.A. Matin, A. Faessler, S.W. Huang, E. Lehmann, R.K. Puri, Nucl. Phys. A 548, 102 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    V.S. Uma Maheswari, C. Fuchs, A. Faessler, L. Sehn, D.S. Kosov, Z. Wang, Nucl. Phys. A 628, 669 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    S.R. de Groot, L.G. Suttorp, Foundations of Electrodynamics (North-Holland, Amsterdam, 1972)Google Scholar
  56. 56.
    C. Hartnack, R.K. Puri, J. Aichelin, J. Konopka, S.A. Bass, H. Stöcker, W. Greiner, Eur. Phys. J. A 1, 151 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    T. Song, C.M. Ko, Phys. Rev. C 91, 014901 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    Z. Zhang, C.M. Ko, Phys. Rev. C 95, 064604 (2017)ADSCrossRefGoogle Scholar
  59. 59.
    J. Xu et al., Phys. Rev. C 93, 044609 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    I. Angeli, K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987)ADSCrossRefGoogle Scholar
  62. 62.
    J. Aichelin, Phys. Rep. 202, 233 (1991)ADSCrossRefGoogle Scholar
  63. 63.
    C. Xu, B.A. Li, L.W. Chen, Phys. Rev. C 82, 054607 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    B.A. Li, X. Han, Phys. Lett. B 727, 276 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    L. Arnold, B. Clark, E. Cooper, H. Sherif, D. Hutcheon et al., Phys. Rev. C 25, 936 (1982)ADSCrossRefGoogle Scholar
  66. 66.
    S. Hama, B. Clark, E. Cooper, H. Sherif, R. Mercer, Phys. Rev. C 41, 2737 (1990)ADSCrossRefGoogle Scholar
  67. 67.
    E.D. Cooper, S. Hama, B.C. Clark, R.L. Mercer, Phys. Rev. C 47, 297 (1993)ADSCrossRefGoogle Scholar
  68. 68.
    X.H. Li, W.J. Guo, B.A. Li, L.W. Chen, F.J. Fattoyev, W.G. Newton, Phys. Lett. B 743, 408 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    Z. Zhang, L.W. Chen, Phys. Rev. C 93, 034335 (2016)ADSCrossRefGoogle Scholar
  70. 70.
    D.D.S. Coupland et al., Phys. Rev. C 94, 011601 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    H.Y. Kong, J. Xu, L.W. Chen, B.A. Li, Y.G. Ma, Phys. Rev. C 95, 034324 (2017)ADSCrossRefGoogle Scholar
  72. 72.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002)ADSCrossRefGoogle Scholar
  73. 73.
    G. Colo, N. Van Giai, J. Meyer, K. Bennaceur, P. Bonche, Phys. Rev. C 70, 024307 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, W. Trautmann, Phys. Rev. C 89, 034606 (2014)ADSCrossRefGoogle Scholar
  75. 75.
    A. Le Fèvre, Y. Leifels, W. Reisdorf, J. Aichelin, C. Hartnack, Nucl. Phys. A 945, 112 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    M. Farine, J.M. Pearson, F. Tondeur, Nucl. Phys. A 615, 135 (1997)ADSCrossRefGoogle Scholar
  77. 77.
    B.J. Cai, L.W. Chen, arXiv:1402.4242 (2014)Google Scholar
  78. 78.
    M. Meixner, J.P. Olson, G. Mathews, N.Q. Lan, H.E. Dalhed, arXiv:1303.0064 (2013)Google Scholar
  79. 79.
    L.W. Chen, Sci. China Phys. Mech. Astron. 54, 124 (2011)ADSCrossRefGoogle Scholar
  80. 80.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    E. Khan, J. Margueron, Phys. Rev. Lett. 109, 092501 (2012)ADSCrossRefGoogle Scholar
  82. 82.
    E. Khan, J. Margueron, Phys. Rev. C 88, 034319 (2013)ADSCrossRefGoogle Scholar
  83. 83.
    Z. Zhang, L.W. Chen, Phys. Lett. B 726, 234 (2013)ADSCrossRefGoogle Scholar
  84. 84.
    W. Neubert, A.S. Botvina, Eur. Phys. J. A 17, 559 (2003)ADSCrossRefGoogle Scholar
  85. 85.
    S. Chu, L. Ekstrom, R. Firestone, The lund/lbnl nuclear data search v2.0, http://nucleardata.nuclear.lu.se/toi/
  86. 86.
  87. 87.
    Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, W. Trautmann, Phys. Rev. C 83, 044617 (2011)ADSCrossRefGoogle Scholar
  88. 88.
    W. Trautmann, private communicationGoogle Scholar
  89. 89.
    A. Schüttauf et al., Nucl. Phys. A 607, 457 (1996)ADSCrossRefGoogle Scholar
  90. 90.
    P. Danielewicz, G.F. Bertsch, Nucl. Phys. A 533, 712 (1991)ADSCrossRefGoogle Scholar
  91. 91.
    N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, Phys. Rev. C 93, 044612 (2016)ADSCrossRefGoogle Scholar
  92. 92.
    J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013)ADSCrossRefGoogle Scholar
  93. 93.
    I. Vidaña, C. Providencia, A. Polls, A. Rios, Phys. Rev. C 80, 045806 (2009)ADSCrossRefGoogle Scholar
  94. 94.
    C. Ducoin, J. Margueron, C. Providencia, I. Vidaña, Phys. Rev. C 83, 045810 (2011)ADSCrossRefGoogle Scholar
  95. 95.
    A. Andronic, J. Lukasik, W. Reisdorf, W. Trautmann, Eur. Phys. J. A 30, 31 (2006)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsIFIN-HHMăgurele/BucharestRomania

Personalised recommendations