Advertisement

Comprehensive study of observables in Compton scattering on the nucleon

  • Harald W. Grießhammer
  • Judith A. McGovern
  • Daniel R. Phillips
Regular Article - Theoretical Physics

Abstract.

We present an analysis of 13 observables in Compton scattering on the proton. Cross sections, asymmetries with polarised beam and/or targets, and polarisation-transfer observables are investigated for energies up to the \(\Delta(1232)\) resonance to determine their sensitivity to the proton’s dipole scalar and spin polarisabilities. The Chiral Effective Field Theory Compton amplitude we use is complete at N4LO, \(\mathcal{O}(e^{2}\delta^{4})\), for photon energies \( \omega\sim m_{\pi}\), and so has an accuracy of a few per cent there. At photon energies in the resonance region, it is complete at NLO, \(\mathcal{O}(e^{2}\delta^{0})\), and so its accuracy there is about 20%. We find that for energies from pion-production threshold to about 250 MeV, multiple asymmetries have significant sensitivity to presently ill-determined combinations of proton spin polarisabilities. We also argue that the broad outcomes of this analysis will be replicated in complementary theoretical approaches, e.g., dispersion relations. Finally, we show that below the pion-production threshold, 6 observables suffice to reconstruct the Compton amplitude, and above it 11 are required. Although not necessary for polarisability extractions, this opens the possibility to perform “complete” Compton-scattering experiments. An interactive Mathematica notebook, including results for the neutron, is available from judith.mcgovern@manchester.ac.uk.

Supplementary material

10050_2018_12467_MOESM1_ESM.pdf (29.2 mb)
Supplementary material

References

  1. 1.
    R.E. Prange, Phys. Rev. 110, 240 (1958)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    H.W. Grießhammer, J.A. McGovern, D.R. Phillips, Eur. Phys. J. A 52, 139 (2016) arXiv:1511.01952 [nucl-th]ADSCrossRefGoogle Scholar
  3. 3.
    D. Drechsel, B. Pasquini, M. Vanderhaeghen, Phys. Rep. 378, 99 (2003) arXiv:hep-ph/0212124ADSCrossRefGoogle Scholar
  4. 4.
    J.A. McGovern, D.R. Phillips, H.W. Grießhammer, Eur. Phys. J. A 49, 12 (2013) arXiv:1210.4104 [nucl-th]ADSCrossRefGoogle Scholar
  5. 5.
    V. Lensky, J.A. McGovern, Phys. Rev. C 89, 032202 (2014) arXiv:1401.3320 [nucl-th]ADSCrossRefGoogle Scholar
  6. 6.
    B. Pasquini, P. Pedroni, S. Sconfietti, arXiv:1711.07401 [hep-ph]Google Scholar
  7. 7.
    COMPTON@MAX-lab Collaboration (L.S. Myers et al.), Phys. Rev. Lett. 113, 262506 (2014) arXiv:1409.3705 [nucl-ex]ADSCrossRefGoogle Scholar
  8. 8.
    A2 Collaboration (P.P. Martel et al.), Phys. Rev. Lett. 114, 112501 (2015) arXiv:1408.1576 [nucl-ex]ADSCrossRefGoogle Scholar
  9. 9.
    A2 Collaboration (V. Sokhoyan et al.), Eur. Phys. J. A 53, 14 (2017) arXiv:1611.03769 [nucl-ex]CrossRefGoogle Scholar
  10. 10.
    H.W. Grießhammer, A.I. L’vov, J.A. McGovern, V. Pascalutsa, B. Pasquini, D.R. Phillips, arXiv:1409.1512 [nucl-th]Google Scholar
  11. 11.
    D. Babusci, G. Giordano, A.I. L’vov, G. Matone, A.M. Nathan, Phys. Rev. C 58, 1013 (1998) arXiv:hep-ph/9803347ADSCrossRefGoogle Scholar
  12. 12.
    R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, Eur. Phys. J. A 20, 329 (2004) arXiv:nucl-th/0308054ADSCrossRefGoogle Scholar
  13. 13.
    R.P. Hildebrandt, PhD Thesis, Technische Universität München (2005) arXiv:nucl-th/0512064Google Scholar
  14. 14.
    B. Pasquini, D. Drechsel, M. Vanderhaeghen, Phys. Rev. C 76, 015203 (2007) arXiv:0705.0282 [hep-ph]ADSCrossRefGoogle Scholar
  15. 15.
    P. Martel, PhD Thesis, University of Massachusetts, Amherst (2012) https://wwwa2.kph.uni-mainz.de/images/publications/phd/pmartel_dis.pdf
  16. 16.
  17. 17.
    G.M. Huber, C. Collicott, arXiv:1508.07919 [nucl-ex]Google Scholar
  18. 18.
    A2 Collaboration (P. Martel et al.), EPJ Web of Conferences 142, 01021 (2017)CrossRefGoogle Scholar
  19. 19.
    H.W. Grießhammer, J.A. McGovern, D.R. Phillips, AIP Conf. Proc. 1735, 040010 (2016) arXiv:1509.09177 [nucl-th]CrossRefGoogle Scholar
  20. 20.
    J. McGovern, H. Grießhammer, D. Phillips, PoS CD 15, 024 (2015)Google Scholar
  21. 21.
    R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, B. Pasquini, Eur. Phys. J. A 20, 293 (2004) arXiv:nucl-th/0307070ADSCrossRefGoogle Scholar
  22. 22.
    V. Lensky, J. McGovern, V. Pascalutsa, Eur. Phys. J. C 75, 604 (2015) arXiv:1510.02794 [hep-ph]ADSCrossRefGoogle Scholar
  23. 23.
    B.R. Holstein, D. Drechsel, B. Pasquini, M. Vanderhaeghen, Phys. Rev. C 61, 034316 (2000) arXiv:hep-ph/9910427ADSCrossRefGoogle Scholar
  24. 24.
    H.W. Grießhammer, J.A. McGovern, D.R. Phillips, G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012) arXiv:1203.6834 [nucl-th]ADSCrossRefGoogle Scholar
  25. 25.
    V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003) arXiv:nucl-th/0212024ADSCrossRefGoogle Scholar
  26. 26.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007) arXiv:hep-ph/0609004ADSCrossRefGoogle Scholar
  28. 28.
    L.W. Cawthorne, J.A. McGovern, PoS CD 15, 072 (2016) arXiv:1510.09136 [nucl-th]Google Scholar
  29. 29.
    H.W. Grießhammer, T.R. Hemmert, Phys. Rev. C 65, 045207 (2002) arXiv:nucl-th/0110006ADSCrossRefGoogle Scholar
  30. 30.
    H.W. Griesshammer, Prog. Part. Nucl. Phys. 55, 215 (2005) arXiv:nucl-th/0411080ADSCrossRefGoogle Scholar
  31. 31.
    N. Krupina, V. Lensky, V. Pascalutsa, arXiv:1712.05349 [nucl-th]Google Scholar
  32. 32.
    V. Lensky, V. Pascalutsa, Eur. Phys. J. C 65, 195 (2010) arXiv:0907.0451 [hep-ph]ADSCrossRefGoogle Scholar
  33. 33.
    B. Pasquini, private communicationGoogle Scholar
  34. 34.
    B. Strandberg, A. Margaryan, H.W. Grießhammer, J.A. McGovern, D.R. Phillips, D. Shukla, in preparationGoogle Scholar
  35. 35.
    H.W. Grießhammer, Eur. Phys. J. A 49, 100 (2013) 53ADSCrossRefGoogle Scholar
  36. 36.
    G.G. Ohlsen, Rep. Prog. Phys. 35, 717 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    M.H. Sikora et al., Phys. Rev. Lett. 112, 022501 (2014) arXiv:1309.7897 [nucl-ex]ADSCrossRefGoogle Scholar
  38. 38.
    M. Ahmed, private communication (2017)Google Scholar
  39. 39.
    G. Blanpied, M. Blecher, A. Caracappa, R. Deininger, C. Djalali, G. Giordano, K. Hicks, S. Hoblit et al., Phys. Rev. C 64, 025203 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    J.D. Jackson, Classical Electrodynamics (Wiley, 1998)Google Scholar
  41. 41.
    O. Gryniuk, F. Hagelstein, V. Pascalutsa, Phys. Rev. D 92, 074031 (2015) arXiv:1508.07952 [nucl-th]ADSCrossRefGoogle Scholar
  42. 42.
    O. Gryniuk, F. Hagelstein, V. Pascalutsa, Phys. Rev. D 94, 034043 (2016) arXiv:1604.00789 [nucl-th]ADSCrossRefGoogle Scholar
  43. 43.
    V. Olmos de Leon et al., Eur. Phys. J. A 10, 207 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    B. Pasquini, P. Pedroni, D. Drechsel, Phys. Lett. B 687, 160 (2010) arXiv:1001.4230 [hep-ph]ADSCrossRefGoogle Scholar
  45. 45.
    N. Krupina, V. Pascalutsa, Phys. Rev. Lett. 110, 262001 (2013) arXiv:1304.7404 [nucl-th]ADSCrossRefGoogle Scholar
  46. 46.
    V. Pascalutsa, D.R. Phillips, Phys. Rev. C 68, 055205 (2003) arXiv:nucl-th/0305043ADSCrossRefGoogle Scholar
  47. 47.
    M.I. Levchuk, A.I. L’vov, V.A. Petrun’kin, Few-Body Syst. 16, 101 (1994)ADSCrossRefGoogle Scholar
  48. 48.
    M.I. Levchuk, A.I. L’vov, Nucl. Phys. A 674, 449 (2000) arXiv:nucl-th/9909066ADSCrossRefGoogle Scholar
  49. 49.
    B. Demissie, H.W. Grießhammer, PoS CD 15, 097 (2016)Google Scholar
  50. 50.
    H. Arenhovel, W. Leidemann, E.L. Tomusiak, Nucl. Phys. A 641, 517 (1998) arXiv:nucl-th/9806017ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Harald W. Grießhammer
    • 1
  • Judith A. McGovern
    • 2
  • Daniel R. Phillips
    • 3
  1. 1.Institute for Nuclear Studies, Department of PhysicsThe George Washington UniversityWashingtonUSA
  2. 2.School of Physics and AstronomyThe University of ManchesterManchesterUK
  3. 3.Department of Physics and Astronomy and Institute of Nuclear and Particle PhysicsOhio UniversityAthensUSA

Personalised recommendations