Advertisement

Quasielastic scattering of 17C from a carbon target at 40 MeV/nucleon

  • Yu-Shou Song
  • Li-Yuan Hu
  • Ying-Wei Hou
  • Hui-Lan Liu
  • Zhao-Yang Xie
  • Ke Zhou
  • Jia-Xing Li
  • Ji-Ren Zhou
  • Wen Zeng
  • Chao-Jin Gui
  • Jian-Song Wang
  • Yan-Yun Yang
  • Peng Ma
  • Jun-Bing Ma
  • Shi-Lun Jin
  • Zhen Bai
  • Mei-Rong Huang
  • Wei-Hu Ma
  • Ming-Hui Zhao
  • Yuan-Jie Zhou
  • Yong Li
Regular Article - Experimental Physics
  • 80 Downloads

Abstract.

The quasielastic scattering angular distribution of 17C from a carbon target at 40MeV/nucleon was measured using the inverse kinematics method. The analysis of the experimental data was started using the optical model. The data were reproduced very well and the optical potential in the Woods-Saxon form was obtained. Within the framework of the coupled-channel method, the contribution from the inelastic channels to the experimental data is found significant at large angles. A systematic analysis of the elastic/quasielastic scattering of 11-13,17C + 12C was performed as well. The present work indicates that 17C is a normal nucleus whose radius is not anomalously large.

References

  1. 1.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Hansen, B. Johnson, Europhys. Lett. 4, 409 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693, 32 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    W. Horiuchi, Y. Suzuki, Phys. Rev. C 74, 034311 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    R. Kanungo et al., Phys. Rev. Lett. 117, 102501 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Elekes et al., Phys. Lett. B 614, 174 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    H. Sagawa et al., Phys. Rev. C 78, 041304 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    G.W. Fan et al., Chin. Phys. C 38, 014101 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    U.D. Pramanik et al., Phys. Lett. B 551, 63 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    C. Wu et al., J. Phys. G: Nucl. Phys. 31, 39 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    C. Rodriguez-Tajes et al., Eur. Phys. J. A 48, 95 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    D. Suzuki et al., Phys. Lett. B 666, 222 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    D. Smalley et al., Phys. Rev. C 92, 064314 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    M. Wang et al., Chin. Phys. C 41, 030003 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    C. Wu et al., Nucl. Phys. A 739, 3 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    T. Baumann et al., Phys. Lett. B 439, 256 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    D. Bazin et al., Phys. Rev. C 57, 2156 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    E. Sauvan et al., Phys. Rev. C 69, 044603 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    A. Ozawa et al., Nucl. Phys. A 691, 599 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    H.T. Fortune, Phys. Rev. C 94, 064307 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    N. Keeley et al., Prog. Part. Nucl. Phys. 63, 396 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    J.J. Kolata et al., Eur. Phys. J. A 52, 123 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    C.-B. Moon et al., Phys. Lett. B 297, 39 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    J. Raynal, CEA Saclay report CEA-N-2772 (1994)Google Scholar
  26. 26.
    I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Sun et al., Nucl. Instrum. Methods Phys. A 503, 496 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    M. Zahar et al., Phys. Rev. C 49, 1540 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    Y.L. Ye et al., Phys. Rev. C 71, 014604 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    J.L. Lou et al., Phys. Rev. C 83, 034612 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M.E. Brandan et al., Phys. Rev. C 34, 1484 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    G. Igo, Phys. Rev. 115, 1665 (1959)ADSCrossRefGoogle Scholar
  33. 33.
    M.E. Brandan, Phys. Rev. Lett. 60, 784 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    J.J. Kolata et al., Phys. Rev. Lett. 69, 2631 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    C.C. Sahm et al., Phys. Rev. C 34, 2165 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    C. Bérat et al., Nucl. Phys. A 555, 455 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    D.T. Khoa, G.R. Satchler, W. Von Oertzen, Phys. Lett. B 358, 14 (1995)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Shou Song
    • 1
  • Li-Yuan Hu
    • 1
  • Ying-Wei Hou
    • 1
  • Hui-Lan Liu
    • 1
  • Zhao-Yang Xie
    • 1
  • Ke Zhou
    • 1
  • Jia-Xing Li
    • 2
    • 3
  • Ji-Ren Zhou
    • 2
  • Wen Zeng
    • 3
  • Chao-Jin Gui
    • 3
  • Jian-Song Wang
    • 4
  • Yan-Yun Yang
    • 4
  • Peng Ma
    • 4
  • Jun-Bing Ma
    • 4
  • Shi-Lun Jin
    • 4
  • Zhen Bai
    • 4
  • Mei-Rong Huang
    • 4
  • Wei-Hu Ma
    • 4
  • Ming-Hui Zhao
    • 4
  • Yuan-Jie Zhou
    • 4
  • Yong Li
    • 4
  1. 1.Fundamental Science on Nuclear Safety and Simulation Technology LaboratoryHarbin Engineering UniversityHarbinChina
  2. 2.School of Power EngineeringChongqing UniversityChongqingChina
  3. 3.School of Physical Science and TechnologySouthwest UniversityChongqingChina
  4. 4.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina

Personalised recommendations