Advertisement

Measurement of the 234U(n, f ) cross-section with quasi-monoenergetic beams in the keV and MeV range using a Micromegas detector assembly

  • A. Stamatopoulos
  • A. Kanellakopoulos
  • A. Kalamara
  • M. Diakaki
  • A. Tsinganis
  • M. Kokkoris
  • V. Michalopoulou
  • M. Axiotis
  • A. Lagoyiannis
  • R. Vlastou
Regular Article - Experimental Physics

Abstract.

The 234U neutron-induced fission cross-section has been measured at incident neutron energies of 452, 550, 651 keV and 7.5, 8.7, 10 MeV using the 7Li (p, n) and the 2H(d, n) reactions, respectively, relative to the 235U(n, f ) and 238U(n, f ) reference reactions. The measurement was performed at the neutron beam facility of the National Center for Scientific Research “Demokritos”, using a set-up based on Micromegas detectors. The active mass of the actinide samples and the corresponding impurities were determined via \( \alpha\)-spectroscopy using a surface barrier silicon detector. The neutron spectra intercepted by the actinide samples have been thoroughly studied by coupling the NeuSDesc and MCNP5 codes, taking into account the energy and angular straggling of the primary ion beams in the neutron source targets in addition to contributions from competing reactions (e.g. deuteron break-up) and neutron scattering in the surrounding materials. Auxiliary Monte Carlo simulations were performed making combined use of the FLUKA and GEF codes, focusing particularly on the determination of the fission fragment detection efficiency. The developed methodology and the final results are presented.

References

  1. 1.
    NEA, Accelerator-driven Systems (ADS) and Fast Reactors (FR) in advanced nuclear fuel Cycles, Technical Report (Nuclear Energy Agency of the OECD, NEA, 2002)Google Scholar
  2. 2.
    https://www.gen-4.org Gen-IV International Forum
  3. 3.
    A. Stanculescu, Ann. Nucl. Energy 62, 607 (2013)CrossRefGoogle Scholar
  4. 4.
    F. Goldner, R. Versluis, Transmutation capabilities of Generation 4 Reactors, Technical Report (Nuclear Energy Agency of the OECD, NEA, 2007)Google Scholar
  5. 5.
    M. Diakaki et al., Acta Phys. Pol. B 47, 789 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    M. Diakaki et al., Eur. Phys. J. A 49, 1 (2013)CrossRefGoogle Scholar
  7. 7.
    IAEA, Thorium Fuel Cycle - Potential Benefits and Challenges (International Atomic Energy Agency, Nuclear Fuel Cycle and Materials Section, Vienna, 2005)Google Scholar
  8. 8.
    R. Lamphere, Phys. Rev. 91, 655 (1953)ADSCrossRefGoogle Scholar
  9. 9.
    R. Lamphere, R. Greene, Phys. Rev. 100, 763 (1955)ADSCrossRefGoogle Scholar
  10. 10.
    R. Lamphere, Phys. Rev. 104, 1654 (1956)ADSCrossRefGoogle Scholar
  11. 11.
    R. Lamphere, Nucl. Phys. 38, 561 (1962)CrossRefGoogle Scholar
  12. 12.
    L. Lowry, Report Los Alamos Scientific Lab. No. 1714 (1954)Google Scholar
  13. 13.
    R. Babcock, Technical Report, Bettis Atomic Power Lab., Westinghouse, Pittsburgh, PA, USA (1961)Google Scholar
  14. 14.
    P. White, J. Hodgkinson, G. Wall, in Physics and Chemistry of Fission Conf. Salzburg, Vol. I (EANDC (UK), 1965) p. 219Google Scholar
  15. 15.
    G.D. James, J.W.T. Dabbs, J.A. Harvey, N.W. Hill, R.H. Schindler, Phys. Rev. C 15, 2083 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    J.W. Meadows, Nucl. Sci. Eng. 65, 171 (1978)CrossRefGoogle Scholar
  17. 17.
    C. Paradela et al., Phys. Rev. C 82, 034601 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    F. Tovesson, A. Laptev, T. Hill, Nucl. Sci. Eng. 178, 57 (2014)CrossRefGoogle Scholar
  19. 19.
    D. Karadimos et al., Phys. Rev. C 89, 044606 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    A. Al-Adili, F.J. Hambsch, S. Pomp, S. Oberstedt, M. Vidali, Phys. Rev. C 93, 034603 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    E. Leal-Cidoncha et al., Nucl. Data Sheets 119, 42 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    N. Otuka et al., Nucl. Data Sheets 120, 272 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    JEFF-3.2: Evaluated Data Library (2014), http://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/
  25. 25.
    K. Shibata et al., Nucl. Sci. Tech. 48, 1 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Ge et al., J. Korean Phys. Soc. 59, 1052 (2011)CrossRefGoogle Scholar
  27. 27.
    ROSFOND-2010 Evaluated Data Library (2010), http://www.ippe.ru/podr/abbn/english/libr/rosfond.php
  28. 28.
    R. Vlastou et al., Nucl. Instrum. Methods B 269, 3266 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    R. Vlastou et al., Phys. Proc. 66, 425 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    R.P. Gardner, K. Verghese, H.M. Lee, Nucl. Instrum. Methods 176, 615 (1980)ADSCrossRefGoogle Scholar
  31. 31.
  32. 32.
    G.F. Knoll, Radiation Detection and Measurement, 3rd edition (John Wiley and Sons, Inc., 2000) p. 119Google Scholar
  33. 33.
    Y. Giomataris et al., Nucl. Instrum. Methods A 376, 29 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Giomataris, Nucl. Instrum. Methods A 419, 239 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Giomataris, Micromegas: results and prospects, Technical Report, CEA/Saclay, DAPNIA, http://www.slac.stanford.edu/pubs/icfa/fall99/paper1/paper1a.html
  36. 36.
    Micro pattern gas detectors - RD51, http://mpgd.web.cern.ch/mpgd/
  37. 37.
    J.F. Ziegler, Nucl. Instrum. Methods B 219, 1027 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    J. Ziegler, Stopping and range of ions in matter, SRIM 2013, www.srim.org
  39. 39.
    S. Andriamonje et al., J. Instrum. 5, P02001 (2010)CrossRefGoogle Scholar
  40. 40.
    S. Andriamonje et al., J. Korean Phys. Soc. 59, 1601 (2011)CrossRefGoogle Scholar
  41. 41.
    S. Andriamonje et al., IEEE Trans. Nucl. Sci. 56, 1076 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    A. Carlson et al., Nucl. Data Sheets 110, 3215 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    E. Birgersson, G. Loevestam, NeuSDesc neutron source description software manual, Technical Report, EUR 23794 EN (European Commission, 2009)Google Scholar
  44. 44.
    L. Waters et al., AIP Conf. Proc. 896, 81 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    A. Ferrari, P. Sala, A. Fass, J. Ranft, FLUKA: A multi-particle transport code (program version 2005) (CERN, Geneva, 2005) cds.cern.ch/record/898301Google Scholar
  46. 46.
    G. Battistoni et al., Ann. Nucl. Energy 82, 10 (2015)CrossRefGoogle Scholar
  47. 47.
    K.H. Schmidt et al., Nucl. Data Sheets 131, 107 (2016)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Stamatopoulos
    • 1
  • A. Kanellakopoulos
    • 1
  • A. Kalamara
    • 1
  • M. Diakaki
    • 1
    • 2
  • A. Tsinganis
    • 2
  • M. Kokkoris
    • 1
  • V. Michalopoulou
    • 1
  • M. Axiotis
    • 3
  • A. Lagoyiannis
    • 3
  • R. Vlastou
    • 1
  1. 1.National Technical University of Athens, Department of PhysicsAthensGreece
  2. 2.European Organisation for Nuclear Research (CERN)GenevaSwitzerland
  3. 3.Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, N.C.S.R. DemokritosAghia Paraskevi, AthensGreece

Personalised recommendations