Advertisement

Enhancement of elliptic flow can signal a first-order phase transition in high-energy heavy-ion collisions

  • Yasushi NaraEmail author
  • Harri Niemi
  • Akira Ohnishi
  • Jan Steinheimer
  • Xiaofeng Luo
  • Horst Stöcker
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Frontiers in Nuclear, Heavy Ion and Strong Field Physics

Abstract.

The beam energy dependence of the elliptic flow, \(v_{2}\), is studied in mid-central Au+Au collisions in the energy range of \(3\leq \sqrt{s_{NN}} \leq 30\) GeV within the microscopic transport model JAM. The results of three different modes of JAM are compared; cascade-, hadronic mean field-, and a new mode with modified equations of state, with a first-order phase transition and with a crossover transition. The standard hadronic mean field suppresses the elliptic flow \(v_{2}\), while the inclusion of the effects of a first-order phase transition (and also of a crossover transition) does enhance the elliptic flow at \(\sqrt{s_{NN}} < 30\) GeV. This is due to the high sensitivity of v2 on the early, compression stage, pressure gradients of the systems created in high-energy heavy-ion collisions. The enhancement or suppression of the scaled energy flow, dubbed “elliptic flow”, \(v_{2}= \langle(p_{x}^{2}-p_{y}^{2})/p_{T}^{2} \rangle\), is understood as being due to out-of-plane flow, \( p_{y} > p_{x}\), i.e. \( v_{2} < 0\), dubbed out of plane - “squeeze-out”, which occurs predominantly in the early, compression stage. Subsequently, the in-plane flow dominates, \(p_{x} > p_{y}\), in the expansion stage, \( v_{2} > 0\). The directed flow, \( v_{1}(y) = \langle p_{x}(y)/p_{T}(y)\rangle\), dubbed “bounce-off”, is an independent measure of the pressure, which quickly builds up the transverse momentum transfer in the reaction plane. When the spectator matter leaves the participant fireball region, where the highest compression occurs, a hard expansion leads to larger \( v_{2}\). A combined analysis of the three transverse flow coefficients, radial \( v_{0} \sim v_{\perp}\)-, directed \(v_{1}\)- and elliptic \( v_{2}\)- flow of nucleons, in the beam energy range \( 3\leq\sqrt{s_{NN}} \leq 10\) GeV, distinguishes the different compression and expansion scenarios: a characteristic dependence on the early stage equation of state is observed. The enhancement of both the elliptic and the transverse radial flow and the simultaneous collapse of the directed flow of nucleons offers a clear signature if a first-order phase transition is realized at the highest baryon densities created in high-energy heavy-ion collisions.

References

  1. 1.
    H. Stoecker, J.A. Maruhn, W. Greiner, Phys. Rev. Lett. 44, 725 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    H. Stoecker, L.P. Csernai, G. Graebner, G. Buchwald, H. Kruse, R.Y. Cusson, J.A. Maruhn, W. Greiner, Phys. Rev. C 25, 1873 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    G. Buchwald, G. Graebner, J. Theis, J. Maruhn, W. Greiner, H. Stoecker, K.A. Frankel, M. Gyulassy, Phys. Rev. C 28, 2349 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    H. Stoecker, W. Greiner, Phys. Rep. 137, 277 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    H. Stoecker, Nucl. Phys. A 750, 121 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    J. Hofmann, H. Stoecker, U.W. Heinz, W. Scheid, W. Greiner, Phys. Rev. Lett. 36, 88 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    C.M. Hung, E.V. Shuryak, Phys. Rev. Lett. 75, 4003 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    D.H. Rischke, Y. Pursun, J.A. Maruhn, H. Stoecker, W. Greiner, Heavy Ion Phys. 1, 309 (1995)Google Scholar
  10. 10.
    J. Brachmann, S. Soff, A. Dumitru, H. Stoecker, J.A. Maruhn, W. Greiner, L.V. Bravina, D.H. Rischke, Phys. Rev. C 61, 024909 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Y.B. Ivanov, E.G. Nikonov, W. Noerenberg, A.A. Shanenko, V.D. Toneev, Heavy Ion Phys. 15, 117 (2002)Google Scholar
  12. 12.
    L.P. Csernai, D. Rohrich, Phys. Lett. B 458, 454 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    L.P. Csernai, A. Anderlik, C. Anderlik, V.K. Magas, E. Molnar, A. Nyiri, D. Rohrich, K. Tamosiunas, Acta Phys. Hung. A 22, 181 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Brachmann, A. Dumitru, J.A. Maruhn, H. Stoecker, W. Greiner, D.H. Rischke, Nucl. Phys. A 619, 391 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 112, 162301 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    STAR Collaboration (P. Shanmuganathan), Nucl. Phys. A 956, 260 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    S. Singha, P. Shanmuganathan, D. Keane, Adv. High Energy Phys. 2016, 2836989 (2016)CrossRefGoogle Scholar
  18. 18.
    V.P. Konchakovski, W. Cassing, Y.B. Ivanov, V.D. Toneev, Phys. Rev. C 90, 014903 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, H. Stoecker, Phys. Rev. C 89, 054913 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Y.B. Ivanov, A.A. Soldatov, Phys. Rev. C 91, 024915 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    P. Batyuk, arXiv:1608.00965 [nucl-th]Google Scholar
  22. 22.
    Y. Nara, H. Niemi, A. Ohnishi, H. Stoecker, Phys. Rev. C 94, 034906 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Nara, H. Niemi, J. Steinheimer, H. Stoecker, Phys. Lett. B 769, 543 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    H.H. Gutbrod, B.W. Kolb, H.R. Schmidt, A.M. Poskanzer, H.G. Ritter, K.H. Kampert, Phys. Lett. B 216, 267 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    E895 Collaboration (C. Pinkenburg et al.), Phys. Rev. Lett. 83, 1295 (1999)CrossRefGoogle Scholar
  26. 26.
    FOPI Collaboration (A. Andronic et al.), Phys. Lett. B 612, 173 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    A. Andronic, J. Lukasik, W. Reisdorf, W. Trautmann, Eur. Phys. J. A 30, 31 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 876, 1 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    P. Danielewicz, R.A. Lacey, P.B. Gossiaux, C. Pinkenburg, P. Chung, J.M. Alexander, R.L. McGrath, Phys. Rev. Lett. 81, 2438 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    C. Hartnack, J. Aichelin, H. Stoecker, W. Greiner, Phys. Lett. B 336, 131 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    A. Le Fevre, Y. Leifels, C. Hartnack, J. Aichelin, arXiv:1611.07500 [nucl-th]Google Scholar
  32. 32.
    J.J. Molitoris, H. Stoecker, H.A. Gustafsson, J. Cugnon, D. L’Hote, Phys. Rev. C 33, 867 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    D.E. Kahana, D. Keane, Y. Pang, T. Schlagel, S. Wang, Phys. Rev. Lett. 74, 4404 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    D.E. Kahana, Y. Pang, E.V. Shuryak, Phys. Rev. C 56, 481 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    J.Y. Ollitrault, Phys. Rev. D 46, 229 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    STAR Collaboration (K.H. Ackermann et al.), Phys. Rev. Lett. 86, 402 (2001)CrossRefGoogle Scholar
  37. 37.
    PHENIX Collaboration (K. Adcox et al.), Phys. Rev. Lett. 89, 212301 (2002)CrossRefGoogle Scholar
  38. 38.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 89, 222301 (2002)CrossRefGoogle Scholar
  39. 39.
    ALICE Collaboration (B.B. Abelev et al.), JHEP 06, 190 (2015)ADSGoogle Scholar
  40. 40.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. Lett. 116, 132302 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 (2011) 109ADSCrossRefGoogle Scholar
  43. 43.
    C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 110, 012302 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    H. Niemi, K.J. Eskola, R. Paatelainen, Phys. Rev. C 93, 024907 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    H. Niemi, K.J. Eskola, R. Paatelainen, K. Tuominen, Phys. Rev. C 93, 014912 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    U. Heinz, R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    C. Gale, S. Jeon, B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    T. Hirano, P. Huovinen, K. Murase, Y. Nara, Prog. Part. Nucl. Phys. 70, 108 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    S. Jeon, U. Heinz, Int. J. Mod. Phys. E 24, 1530010 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    A. Jaiswal, V. Roy, Adv. High Energy Phys. 2016, 9623034 (2016)CrossRefGoogle Scholar
  52. 52.
    H. Stoecker, G. Graebner, J.A. Maruhn, W. Greiner, Phys. Lett. B 95, 192 (1980)ADSCrossRefGoogle Scholar
  53. 53.
    H. Stoecker, Nucl. Phys. A 418, 587C (1984)ADSCrossRefGoogle Scholar
  54. 54.
    H. Sorge, Phys. Rev. Lett. 78, 2309 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    J. Auvinen, H. Petersen, Phys. Rev. C 88, 064908 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    H. Petersen, Q. Li, X. Zhu, M. Bleicher, Phys. Rev. C 74, 064908 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    H. Petersen, M. Bleicher, Phys. Rev. C 81, 044906 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    I.A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Phys. Rev. C 91, 064901 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    J. Steinheimer, V. Koch, M. Bleicher, Phys. Rev. C 86, 044903 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    Y.B. Ivanov, A.A. Soldatov, Phys. Rev. C 91, 024914 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    V.P. Konchakovski, E.L. Bratkovskaya, W. Cassing, V.D. Toneev, S.A. Voloshin, V. Voronyuk, Phys. Rev. C 85, 044922 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 86, 054908 (2012)CrossRefGoogle Scholar
  63. 63.
    Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61, 024901 (2000)ADSCrossRefGoogle Scholar
  64. 64.
    M. Isse, A. Ohnishi, N. Otuka, P.K. Sahu, Y. Nara, Phys. Rev. C 72, 064908 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    H. Sorge, Phys. Rev. C 52, 3291 (1995)ADSCrossRefGoogle Scholar
  66. 66.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)ADSCrossRefGoogle Scholar
  67. 67.
    M. Bleicher et al., J. Phys. G 25, 1859 (1999)ADSCrossRefGoogle Scholar
  68. 68.
    T. Hirano, Y. Nara, Prog. Theor. Exp. Phys. 2012, 01A203 (2012)CrossRefGoogle Scholar
  69. 69.
    Y. Nara, A. Ohnishi, Nucl. Phys. 956, 284 (2016)CrossRefGoogle Scholar
  70. 70.
    T. Maruyama, K. Niita, T. Maruyama, S. Chiba, Y. Nakahara, A. Iwamoto, Prog. Theor. Phys. 96, 263 (1996)ADSCrossRefGoogle Scholar
  71. 71.
    D. Mancusi, K. Niita, T. Maruyama, L. Sihver, Phys. Rev. C 79, 014614 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    H. Sorge, H. Stoecker, W. Greiner, Ann. Phys. 192, 266 (1989)ADSCrossRefGoogle Scholar
  73. 73.
    T. Ogawa, T. Sato, S. Hashimoto, D. Satoh, S. Tsuda, K. Niita, Phys. Rev. C 92, 024614 (2015) 92ADSCrossRefGoogle Scholar
  74. 74.
    R. Marty, J. Aichelin, Phys. Rev. C 87, 034912 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    J. Xu, C.M. Ko, Phys. Rev. C 94, 054909 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    J. Aichelin, Phys. Rep. 202, 233 (1991)ADSCrossRefGoogle Scholar
  77. 77.
    J. Aichelin, H. Stoecker, Phys. Lett. B 176, 14 (1986)ADSCrossRefGoogle Scholar
  78. 78.
    S. Hama, B.C. Clark, E.D. Cooper, H.S. Sherif, R.L. Mercer, Phys. Rev. C 41, 2737 (1990)ADSCrossRefGoogle Scholar
  79. 79.
    H. Sorge, Phys. Rev. Lett. 82, 2048 (1999)ADSCrossRefGoogle Scholar
  80. 80.
    P. Danielewicz, S. Pratt, Phys. Rev. C 53, 249 (1996)ADSCrossRefGoogle Scholar
  81. 81.
    J. Sollfrank, P. Huovinen, M. Kataja, P.V. Ruuskanen, M. Prakash, R. Venugopalan, Phys. Rev. C 55, 392 (1997)ADSCrossRefGoogle Scholar
  82. 82.
    P.F. Kolb, J. Sollfrank, U.W. Heinz, Phys. Lett. B 459, 667 (1999)ADSCrossRefGoogle Scholar
  83. 83.
    P.F. Kolb, J. Sollfrank, U.W. Heinz, Phys. Rev. C 62, 054909 (2000)ADSCrossRefGoogle Scholar
  84. 84.
    J. Steinheimer, S. Schramm, H. Stoecker, J. Phys. G 38, 035001 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    J. Steinheimer, S. Schramm, H. Stoecker, Phys. Rev. C 84, 045208 (2011)ADSCrossRefGoogle Scholar
  86. 86.
    P. Rau, J. Steinheimer, S. Schramm, H. Stoecker, Phys. Rev. C 85, 025204 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    CERES Collaboration (D. Adamova et al.), Nucl. Phys. A 698, 253 (2002)ADSCrossRefGoogle Scholar
  88. 88.
    CERES/NA45 Collaboration (K. Filimonov et al.), AIP Conf. Proc. 610, 556 (2002)CrossRefGoogle Scholar
  89. 89.
    K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, A. Iwamoto, Phys. Rev. C 52, 2620 (1995)ADSCrossRefGoogle Scholar
  90. 90.
    K. Paech, H. Stoecker, A. Dumitru, Phys. Rev. C 68, 044907 (2003)ADSCrossRefGoogle Scholar
  91. 91.
    C. Herold, M. Nahrgang, I. Mishustin, M. Bleicher, Nucl. Phys. A 925, 14 (2014)ADSCrossRefGoogle Scholar
  92. 92.
    A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C 58, 1671 (1998)ADSCrossRefGoogle Scholar
  93. 93.
    N. Borghini, P.M. Dinh, J.Y. Ollitrault, Phys. Rev. C 63, 054906 (2001)ADSCrossRefGoogle Scholar
  94. 94.
    N. Borghini, P.M. Dinh, J.Y. Ollitrault, Phys. Rev. C 64, 054901 (2001)ADSCrossRefGoogle Scholar
  95. 95.
    A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011)ADSCrossRefGoogle Scholar
  96. 96.
    STAR Collaboration (C. Adler et al.), Phys. Rev. C 66, 034904 (2002)CrossRefGoogle Scholar
  97. 97.
    Y. Zhou, K. Xiao, Z. Feng, F. Liu, R. Snellings, Phys. Rev. C 93, 034909 (2016)ADSCrossRefGoogle Scholar
  98. 98.
    R. Bellwied, S. Borsanyi, Z. Fodor, J. Gunther, S.D. Katz, A. Pasztor, C. Ratti, K.K. Szabo, Nucl. Phys. A 956, 797 (2016)ADSCrossRefGoogle Scholar
  99. 99.
    J. Gunther, R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, A. Pasztor, C. Ratti, EPJ Web of Conferences 137, 07008 (2017)CrossRefGoogle Scholar
  100. 100.
    J. Chen, X. Luo, F. Liu, Y. Nara, Chin. Phys. C 42, 024001 (2018)CrossRefGoogle Scholar
  101. 101.
    M. Bleicher, H. Stoecker, Phys. Lett. B 526, 309 (2002)ADSCrossRefGoogle Scholar
  102. 102.
    H. Petersen, J. Steinheimer, M. Bleicher, H. Stoecker, J. Phys. G 36, 055104 (2009)ADSCrossRefGoogle Scholar
  103. 103.
    Y.B. Ivanov, Phys. Rev. C 89, 024903 (2014)ADSCrossRefGoogle Scholar
  104. 104.
    Y.B. Ivanov, A.A. Soldatov, Eur. Phys. J. A 52, 10 (2016)ADSCrossRefGoogle Scholar
  105. 105.
    R.J.M. Snellings, H. Sorge, S.A. Voloshin, F.Q. Wang, N. Xu, Phys. Rev. Lett. 84, 2803 (2000)ADSCrossRefGoogle Scholar
  106. 106.
    V. Vovchenko, M.I. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)ADSCrossRefGoogle Scholar
  107. 107.
    G. Odyniec, EPJ Web of Conferences 95, 03027 (2015)CrossRefGoogle Scholar
  108. 108.
    CBM Collaboration (T. Ablyazimov et al.), Eur. Phys. J. A 53, 60 (2017)CrossRefGoogle Scholar
  109. 109.
    V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, A. Sorin, G. Trubnikov, Nucl. Phys. A 956, 846 (2016)ADSCrossRefGoogle Scholar
  110. 110.
    H. Sako et al., Nucl. Phys. A 931, 1158 (2014)ADSCrossRefGoogle Scholar
  111. 111.
    H. Sako et al., Nucl. Phys. A 956, 850 (2016)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yasushi Nara
    • 1
    • 2
    Email author
  • Harri Niemi
    • 3
  • Akira Ohnishi
    • 4
  • Jan Steinheimer
    • 2
  • Xiaofeng Luo
    • 5
  • Horst Stöcker
    • 2
    • 3
    • 6
  1. 1.Akita International UniversityYuwa, Akita-cityJapan
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  3. 3.Institut für Theoretische PhysikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany
  4. 4.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  5. 5.Key Laboratory of Quark&Lepton Physics (MOE) and Institute of Particle PhysicsCentral China Normal UniversityWuhanChina
  6. 6.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany

Personalised recommendations