Advertisement

N* resonances from K\(\Lambda\) amplitudes in sliced bins in energy

  • A. V. Anisovich
  • V. Burkert
  • M. Hadžimehmedović
  • D. G. Ireland
  • E. Klempt
  • V. A. Nikonov
  • R. Omerović
  • A. V. Sarantsev
  • J. Stahov
  • A. Švarc
  • U. Thoma
Regular Article - Experimental Physics

Abstract.

The two reactions \(\gamma p\rightarrow K^{+}\Lambda\) and \(\pi^{-} p\rightarrow K^{0}\Lambda\) are analyzed to determine the leading photoproduction multipoles and the pion-induced partial wave amplitudes in slices of the invariant mass. The multipoles and the partial-wave amplitudes are simultaneously fitted in a multichannel Laurent+Pietarinen model (L+P model), which determines the poles in the complex energy plane on the second Riemann sheet close to the physical axes. The results from the L+P fit are compared with the results of an energy-dependent fit based on the Bonn-Gatchina (BnGa) approach. The study confirms the existence of several poles due to nucleon resonances in the region at about 1.9 GeV with quantum numbers \(J^{P} = 1/2^{+}, 3/2^{+}, 1/2^{-}, 3/2^{-}, 5/2^{-}\).

References

  1. 1.
    R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Phys. Rev. D 84, 074508 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B 364, 231 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    L.Y. Glozman, W. Plessas, K. Varga, R.F. Wagenbrunn, Phys. Rev. D 58, 094030 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 395 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    M.M. Giannini, E. Santopinto, Chin. J. Phys. 53, 020301 (2015)Google Scholar
  7. 7.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    R. Koniuk, N. Isgur, Phys. Rev. Lett. 44, 845 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    R. Koniuk, N. Isgur, Phys. Rev. D 21, 1868 (1980) 23ADSCrossRefGoogle Scholar
  10. 10.
    G. Höhler, Pion Nucleon Scattering. Part 2: Methods And Results of Phenomenology Analysis, edited by H. Schopper (Springer, 1983)Google Scholar
  11. 11.
    R.E. Cutkosky, C.P. Forsyth, J.B. Babcock, R.L. Kelly, R.E. Hendrick, Pion-nucleon partial wave analysis, in 4th International Conference on Baryon Resonances, Toronto, Canada, Jul. 14-16, 1980 (Toronto University Press, 1980) p. 19 (QCD161:C45:1980)Google Scholar
  12. 12.
    R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 74, 045205 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    S. Capstick, W. Roberts, Phys. Rev. D 58, 074011 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 15 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    D.M. Manley, E.M. Saleski, Phys. Rev. D 45, 4002 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    G. Penner, U. Mosel, Phys. Rev. C 66, 055211 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    G. Penner, U. Mosel, Phys. Rev. C 66, 055212 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    M. Shrestha, D.M.M. Manley, Phys. Rev. C 86, 045204 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    M. Shrestha, D.M. Manley, Phys. Rev. C 86, 055203 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A. Svarc, M. Hadžimehmedović, R. Omerović, H. Osmanović, J. Stahov, Phys. Rev. C 89, 45205 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    A. Anisovich, E. Klempt, A. Sarantsev, U. Thoma, Eur. Phys. J. A 24, 111 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Anisovich, A.V. Sarantsev, Eur. Phys. J. A 30, 427 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    A.V. Anisovich, V.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, Eur. Phys. J. A 34, 129 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    I. Denisenko et al., Phys. Lett. B 755, 97 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    V.A. Nikonov, A.V. Anisovich, E. Klempt, A.V. Sarantsev, U. Thoma, Phys. Lett. B 662, 245 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    T.M. Knasel et al., Phys. Rev. D 11, 1 (1975)ADSCrossRefGoogle Scholar
  28. 28.
    R.D. Baker et al., Nucl. Phys. B 141, 29 (1978)ADSCrossRefGoogle Scholar
  29. 29.
    D.H. Saxon et al., Nucl. Phys. B 162, 522 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    K.W. Bell et al., Nucl. Phys. B 222, 389 (1983)ADSCrossRefGoogle Scholar
  31. 31.
    A.V. Anisovich et al., Eur. Phys. J. A 50, 129 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Phys. Rev. 106, 1345 (1957)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    I.S. Barker, A. Donnachie, J.K. Storrow, Nucl. Phys. B 95, 347 (1975)ADSCrossRefGoogle Scholar
  34. 34.
    C.G. Fasano, F. Tabakin, B. Saghai, Phys. Rev. C 46, 2430 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    G. Keaton, R. Workman, Phys. Rev. C 54, 1437 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    W.T. Chiang, F. Tabakin, Phys. Rev. C 55, 2054 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    A.M. Sandorfi, S. Hoblit, H. Kamano, T.-S.H. Lee, J. Phys. G 38, 053001 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Wunderlich, F. Afzal, A. Thiel, R. Beck, arXiv:1611.01031 [physics.data-an]Google Scholar
  39. 39.
    Y. Wunderlich, R. Beck, L. Tiator, Phys. Rev. C 89, 055203 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    CLAS Collaboration (R. Bradford et al.), Phys. Rev. C 73, 035202 (2006)Google Scholar
  41. 41.
    CLAS Collaboration (M.E. McCracken et al.), Phys. Rev. C 81, 025201 (2010)CrossRefGoogle Scholar
  42. 42.
    CLAS Collaboration (R.K. Bradford et al.), Phys. Rev. C 75, 035205 (2007)Google Scholar
  43. 43.
    CLAS Collaboration (C.A. Paterson et al.), Phys. Rev. C 93, 065201 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    S.U. Chung, J. Brose, R. Hackmann, E. Klempt, S. Spanier, C. Strassburger, Ann. Phys. 4, 404 (1995)CrossRefGoogle Scholar
  45. 45.
    R.L. Workman, L. Tiator, A. Sarantsev, Phys. Rev. C 87, 068201 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 49, 158 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    CBELSA/TAPS Collaboration (V. Sokhoyan et al.), Eur. Phys. J. A 51, 95 (2015) 51CrossRefGoogle Scholar
  48. 48.
    CBELSA/TAPS Collaboration (E. Gutz et al.), Eur. Phys. J. A 50, 74 (2014)CrossRefGoogle Scholar
  49. 49.
    A. Svarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, L. Tiator, R.L. Workman, Phys. Rev. C 88, 035206 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Michiel Hazewinkel, Encyclopaedia of Mathematics, Vol. 6, (Springer, 1990) p. 251Google Scholar
  51. 51.
    S. Ciulli, J. Fischer, Nucl. Phys. 24, 465 (1961)CrossRefGoogle Scholar
  52. 52.
    I. Ciulli, S. Ciulli, J. Fisher, Nuovo Cimento 23, 1129 (1962)CrossRefGoogle Scholar
  53. 53.
    E. Pietarinen, Nuovo Cimento A 12, 522 (1972)ADSCrossRefGoogle Scholar
  54. 54.
    E. Pietarinen, Nucl. Phys. B 107, 21 (1976)ADSCrossRefGoogle Scholar
  55. 55.
    A. Svarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, L. Tiator, R.L. Workman, Phys. Rev. C 89, 065208 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    A. Svarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, R.L. Workman, Phys. Rev. C 91, 015207 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    A. Svarc, M. Hadžimehmedović, H. Osmanović, J. Stahov, L. Tiator, R.L. Workman, Phys. Lett. B 755, 452 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    D. Rönchen et al., Eur. Phys. J. A 51, 70 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    A2 Collaboration (V.L. Kashevarov et al.), Phys. Rev. Lett. 118, 212001 (2017)ADSCrossRefGoogle Scholar
  60. 60.
    L. De Cruz, T. Vrancx, P. Vancraeyveld, J. Ryckebusch, Phys. Rev. Lett. 108, 182002 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    L. De Cruz, J. Ryckebusch, T. Vrancx, P. Vancraeyveld, Phys. Rev. C 86, 015212 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    D. Skoupil, P. Bydžovský, Phys. Rev. C 93, 025204 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    C.Z. Wu, Q.F. Lü, J.J. Xie, X.R. Chen, Commun. Theor. Phys. 63, 215 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    L.Y. Xiao, F. Ouyang, K.L. Wang, X.H. Zhong, Phys. Rev. C 94, 035202 (2016)ADSCrossRefGoogle Scholar
  65. 65.
    T. Mart, S. Clymton, A.J. Arifi, Phys. Rev. D 92, 094019 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    T. Mart, S. Sakinah, Phys. Rev. C 95, 045205 (2017)ADSCrossRefGoogle Scholar
  67. 67.
    A.V. Anisovich et al., Eur. Phys. J. A 52, 284 (2016)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • A. V. Anisovich
    • 1
    • 2
  • V. Burkert
    • 3
  • M. Hadžimehmedović
    • 6
  • D. G. Ireland
    • 5
  • E. Klempt
    • 1
    • 3
  • V. A. Nikonov
    • 1
    • 2
  • R. Omerović
    • 6
  • A. V. Sarantsev
    • 1
    • 2
  • J. Stahov
    • 6
  • A. Švarc
    • 4
  • U. Thoma
    • 1
  1. 1.Helmholtz-Institute für Strahlen- und Kernphysik der Universität BonnBonnGermany
  2. 2.Particle and Nuclear Physics InstituteGatchinaRussia
  3. 3.Thomas Jefferson LaboratoryNewport NewsUSA
  4. 4.Rudjer Boskovic InstituteZagrebCroatia
  5. 5.SUPA, School of Physics and AstronomyUniversity of GlasgowGlasgowUK
  6. 6.University of Tuzla, Faculty of Natural Sciences and MathematicsTuzlaBosnia and Herzegovina

Personalised recommendations