Advertisement

The total kinetic energy release in the fast neutron-induced fission of 232Th

  • Jonathan King
  • Ricardo Yanez
  • Walter Loveland
  • J. Spencer Barrett
  • J Spencer Barrett
  • Breland Oscar
  • Nikolaos Fotiades
  • Fredrik Tovesson
  • Hye Young Lee
Regular Article - Experimental Physics

Abstract.

The post-emission total kinetic energy release (TKE) in the neutron-induced fission of 232Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from \( E_{n} = 3\) to 91MeV. In this energy range the average post-neutron total kinetic energy release decreases from \( 162.3 \pm 0.3\) at \( E_n = 3\) MeV to \( 154.9 \pm 0.3\) MeV at \( E_n = 91\) MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission.

References

  1. 1.
    P. Möller, A.J. Sierk, T. Ichikawa, A. Iwamoto, M. Mumpower, Phys. Rev. C 91, 024310 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    P.W. Lisowski, J.L. Ullmann, S.B. Balestrini, A.D. Carlson, O.A. Wasson, N.W. Hill, in Proceedings from the International Conference on Nuclear Data For Science and Technology, edited by S. Igarski (Japan Atomic Energy Research Institute, Mito, Japan, 1988) p. 97Google Scholar
  3. 3.
    K.H. Schmidt, B. Jurado, khs.erzhausen.de (version of model used GEF2016/1.2 downloaded on March 19, 2017)Google Scholar
  4. 4.
    K.H. Schmidt, B. Jurando, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    J. Jungerman, S.C. Wright, Phys. Rev. 76, 1112 (1949)ADSCrossRefGoogle Scholar
  6. 6.
    W. Holubarsch, E. Pfeiffer, F. Gönnenwein, Nucl. Phys. A 171, 631 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    J.W. Behrens, J.C. Browne, Phys. Lett. B 69, 278 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    J. Trochon, H.A. Yehia, F. Brisard, Y. Pranal, Nucl. Phys. A 318, 63 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    P. D’hondt, C. Wagemans, G. Barreau, A.J. Deruytter, Ann. Nucl. Energy 7, 367 (1980)CrossRefGoogle Scholar
  10. 10.
    L.E. Glendenin, J.E. Gindler, I. Ahmad, D.J. Henderson, J.W. Meadows, Phys. Rev. C 22, 152 (1980)ADSCrossRefGoogle Scholar
  11. 11.
    J. Kiesewetter, K.-Th. Brinkmann, F.M. Baumann, H. Freiesleben, H. Sohlbach, Nucl. Phys. A 540, 75 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    V.D. Simutkin, I.V. Ryzhov, G.A. Tutin, L.A. Vaishnene, J. Blomgren, S. Pomp, M. Öesterlund, P. Andersson, R. Bevilacqua, J.P. Meulders, R. Prieels, in Proceedings of the 4th International Workshop on Nuclear Fission and Fission-Product Spectroscopy, edited by A. Chatillon, H. Faust, G. Fioni, D. Goutte, H. Goutte, APS Conference Series, Vol. CP1175 (AIP, 2009)Google Scholar
  13. 13.
    V. Simutkin, Thesis, Uppsala University (2010)Google Scholar
  14. 14.
    I.V. Ryzhov, S.G. Yavshits, G.A. Tutin, N.V. Kovalev, A.V. Saulski, N.A. Kudryashev, M.S. Onegin, L.A. Vaishnene, Yu.A. Gavrikov, O.T. Grudzevich, V.D. Simutkin, S. Pomp, J. Blomgren, M. Österlund, P. Andersson, R. Bevilacqua, J.P. Meulders, R. Prieels, Phys. Rev. C 83, 054603 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    I.V. Ryzhov G.A. Tutin, V.D. Simutkin, J. Blomgren, S. Pomp, M. Österlind, P. Andersson, R. Bevilacqua, M.S. Onegin, L.A. Vaishnene, J.P. Meulders, R. Prieels, J. Korean Phys. Soc. 59, 1864 (2011)CrossRefGoogle Scholar
  16. 16.
    V.D. Simutkin, S. Pomp, J. Blomgren, M. Österlund, R. Bevilacqua, P. Andersson, I.V. Ryzhov, G.A. Tutin, S.G. Yavshits, L.A. Vaishnene, M.S. Onegin, J.P. Meulders, R. Prieels, Nucl. Data Sheets 119, 331 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    H. Naik, S. Mukherji, S.V. Suryanarayana, K.C. Jagadeesan, S.V. Thakare, S.C. Sharma, Nucl. Phys. A 952, 100 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    L. Audouin, L. Tassan-Got, C. Stephan, C. Paradela, B. Berthier, L. Ferrant, S. Isaev, C. Le Naour, D. Trubert, I. Duran, in Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, 2007)  https://doi.org/10.1051/ndata:07675
  19. 19.
    O. Shcherbakov, A. Donets, A. Evdokimov, A. Fomichev, T. Fukahori, A. Hasegawa, A. Laptev, V. Maslov, G. Petrov, S. Soloviev, Y. Tuboltsev, A. Vorobyev, J. Nucl. Sci Technol. 39, 230 (2002)CrossRefGoogle Scholar
  20. 20.
    X.-J. Sun, C.-H. Pan, C.-G. Yu, Y.-X. Yu, N. Wang, Commun. Theor. Phys. 62, 711 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    K.-H. Schmidt, A. Kelic, M.V. Ricciardi, EPL 83, 32001 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    C. Böeckstiegel, S. Steinhäuser, K.-H. Schmidt, H.-G. Clerc, A. Grewe, A. Heinz, M. de Jong, A.R. Junghans, J. Müller, B. Voss, Nucl. Phys. A 802, 12 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    S.I. Mulgin, K.-H. Schmidt, A. Grewe, A.V. Zhdanov, Nucl. Phys. A 640, 375 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    K.-H. Schmidt, B. Jurado, Phys. Rev. Lett. 104, 212501 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    B. Jurado, K.-H. Schmidt, J. Phys. G Nucl. Part. Phys. 42, 055101 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    K.-H. Schmidt, B. Jurado, Phys. Rev. C 82, 014607 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    K.-H. Schmidt, B. Jurado, Phys. Rev. C 83, 061601(R) (2011)ADSCrossRefGoogle Scholar
  28. 28.
    K.-H. Schmidt, B. Jurado, Phys. Rev. C 86, 044322 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    K.-H. Schmidt, B. Jurado, Ch. Amouroux, JEFF-Report 24, Data Bank (Nuclear Energy Agency, OECD, 2014)Google Scholar
  30. 30.
    V.E. Viola, K. Kwiatkowski, M. Walker, Phys. Rev. C 31, 1550 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    S. Bjørnholm, J.E. Lynn, Rev. Mod. Phys. 52, 725 (1980)ADSCrossRefGoogle Scholar
  32. 32.
    T. Ohtsuki, Y. Nagame, H. Ikezoe, K. Tsukada, K. Sueki, H. Nakahara, Phys. Rev. Lett. 66, 17 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    I. Nishinaka, Y. Nagame, H. Ikezoe, M. Tanikawa, Y.L. Zhao, K. Sueki, H. Nakahara, Phys. Rev. C 70, 014609 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    S.I. Mulgin, S.V. Zhdanov, N.A. Kondratiev, K.V. Kovalchuk, A.Ya. Rusanov, Nucl. Phys. A 824, 1 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    H. Naik, A. Goswami, G.N. Kim, K. Kim, S.V. Suryanarayana, Eur. Phys. J. A 49, 133 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    C. Chung, J.J. Hogan, Phys. Rev. C 24, 180 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    B.P. Pathak, L. Lessard, Phys. Rev. C 32, 916 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    M.C. Duijvestijn, A.J. Koning, J.P.M. Beijers, A. Ferrari, M. Gastal, J. van Klinken, R.W. Ostendorf, Phys. Rev. C 59, 776 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    M.C. Duijvestijn, A.J. Koning, F.-J. Hambsch, Phys. Rev. C 64, 014607 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    V.M. Maslov, CP1175, in Proceedings of the 4th International Workshop on Nuclear Fission and Fission-Product Spectroscopy, edited by A. Chatillon, H. Faust, G. Fioni, D. Goutte, H. Goutte (AIP, 2009)Google Scholar
  41. 41.
    V.M. Maslov, Phys. Lett. B 649, 376 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    V.M. Maslov, J. Korean Phys. Soc. 59, 863 (2011)CrossRefGoogle Scholar
  43. 43.
    P. Möller, A.J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, S. Åberg, Phys. Rev. C 79, 064304 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)ADSCrossRefGoogle Scholar
  45. 45.
    P.W. Lisowski, C.D. Bowman, G.J. Russell, S.A. Wender, Nucl. Sci. Eng. 106, 208 (1990)CrossRefGoogle Scholar
  46. 46.
    P.W. Lisowski, K.F. Schoenberg, Nucl. Instrum. Methods Phys. Res. A 562, 910 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    F. Tovesson, Nucl. Data Sheets 123, 124 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    R. Yanez, J. King, J.S. Barrett, W. Loveland, N. Fotiades, H.Y. Lee, Nucl. Phys. A 970, 65 (2018)CrossRefGoogle Scholar
  49. 49.
    S.A. Wender, S. Balestrini, A. Brown, R.C. Haight, C.M. Laymon, T.M. Lee, P.W. Lisowski, W. McCorkle, R.O. Nelson, W. Parker, N.W. Hill, Nucl. Instrum. Methods Phys. Res. A 336, 226 (1993)ADSCrossRefGoogle Scholar
  50. 50.
    H.W. Schmitt, J.H. Neiler, F.J. Walter, Phys. Rev. 141, 1146 (1966)ADSCrossRefGoogle Scholar
  51. 51.
    L.C. Northcliffe, R.F. Schilling, At. Data Nucl. Data Tables 7, 233 (1970)ADSCrossRefGoogle Scholar
  52. 52.
    J.P. Unik, J.E. Gindler, L.E. Glendenin, K.F. Flynn, A. Gorski, R.K. Sjoblom, Phys. Chem. Fission II, 19 (1974)Google Scholar
  53. 53.
    M.J. Bennett, W.E. Stein, Phys. Rev. 156, 1277 (1967)ADSCrossRefGoogle Scholar
  54. 54.
    G.F. Bertsch, W. Loveland, W. Nazarewicz, P. Talou, J. Phys. G: Nucl. Part. Phys. 42, 077001 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    F.L. Filmer, J. Nucl. Energy 22, 79 (1968)ADSCrossRefGoogle Scholar
  56. 56.
    H.W. Schmitt, W.E. Kiker, C.W. Williams, Phys. Rev. 137, B837 (1965)ADSCrossRefGoogle Scholar
  57. 57.
    A.I. Sergachev, V.G. Vorobyeva, D.B. Kuzminov, V.B. Mikhailov, M.Z. Tarasko, Yad. Fiz. 7, 778 (1968)Google Scholar
  58. 58.
    D.L. Duke, PhD Thesis, Colorado School of Mines LA-UR-15-28829 (2015)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jonathan King
    • 1
  • Ricardo Yanez
    • 1
  • Walter Loveland
    • 1
  • J. Spencer Barrett
    • 1
  • J Spencer Barrett
    • 1
  • Breland Oscar
    • 1
  • Nikolaos Fotiades
    • 2
  • Fredrik Tovesson
    • 2
  • Hye Young Lee
    • 2
  1. 1.Dept. of ChemistryOregon State UniversityCorvallisUSA
  2. 2.Physics DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations