Advertisement

Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons

  • Alfredo VegaEmail author
  • Adolfo Ibañez
Regular Article - Theoretical Physics

Abstract.

We consider an analysis of potentials related to Schrödinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks.

References

  1. 1.
    M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005) arXiv:nucl-th/0405013CrossRefADSGoogle Scholar
  2. 2.
    E.V. Shuryak, Nucl. Phys. A 750, 64 (2005) arXiv:hep-ph/0405066CrossRefADSGoogle Scholar
  3. 3.
    FlowQCD Collaboration (M. Asakawa et al.), Phys. Rev. D 90, 011501 (2014) 92CrossRefADSGoogle Scholar
  4. 4.
    M. Asakawa, T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004) arXiv:hep-lat/0308034CrossRefADSGoogle Scholar
  5. 5.
    Y. Nakahara, M. Asakawa, T. Hatsuda, Phys. Rev. D 60, 091503 (1999) arXiv:hep-lat/9905034CrossRefADSGoogle Scholar
  6. 6.
    A. Ayala, C.A. Dominguez, M. Loewe, Adv. High Energy Phys. 2017, 9291623 (2017) arXiv:1608.04284 [hep-ph]CrossRefGoogle Scholar
  7. 7.
    A. Mocsy, Eur. Phys. J. C 61, 705 (2009) arXiv:0811.0337 [hep-ph]CrossRefADSGoogle Scholar
  8. 8.
    S. Shi, X. Guo, P. Zhuang, Phys. Rev. D 88, 014021 (2013) arXiv:1306.1896 [nucl-th]CrossRefADSGoogle Scholar
  9. 9.
    J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) (Adv. Theor. Math. Phys. 2CrossRefGoogle Scholar
  10. 10.
    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) arXiv:hep-th/9802150MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998) arXiv:hep-th/9803131MathSciNetCrossRefGoogle Scholar
  12. 12.
    S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998) arXiv:hep-th/9802109MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    J. Erdmenger, N. Evans, I. Kirsch, E. Threlfall, Eur. Phys. J. A 35, 81 (2008) arXiv:0711.4467 [hep-th]CrossRefADSGoogle Scholar
  14. 14.
    H. Nastase, Introduction to the ADS/CFT Correspondence, (Cambridge University Press, 2015)Google Scholar
  15. 15.
    K. Kajantie, T. Tahkokallio, J.T. Yee, JHEP 01, 019 (2007) arXiv:hep-ph/0609254CrossRefADSGoogle Scholar
  16. 16.
    P. Colangelo, F. Giannuzzi, S. Nicotri, F. Zuo, Phys. Rev. D 88, 115011 (2013) arXiv:1308.0489 [hep-ph]CrossRefADSGoogle Scholar
  17. 17.
    P. Colangelo, F. Giannuzzi, S. Nicotri, JHEP 05, 076 (2012) arXiv:1201.1564 [hep-ph]CrossRefADSGoogle Scholar
  18. 18.
    N.R.F. Braga, M.A. Martin Contreras, S. Diles, Eur. Phys. J. C 76, 598 (2016) arXiv:1604.08296 [hep-ph]CrossRefADSGoogle Scholar
  19. 19.
    T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)CrossRefADSGoogle Scholar
  20. 20.
    F. Karsch, M.T. Mehr, H. Satz, Z. Phys. C 37, 617 (1988)CrossRefADSGoogle Scholar
  21. 21.
    M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 81, 065024 (2010) arXiv:0911.2298 [hep-ph]CrossRefADSGoogle Scholar
  22. 22.
    A.S. Miranda, C.A. Ballon Bayona, H. Boschi-Filho, N.R.F. Braga, Nucl. Phys. Proc. Suppl. 199, 107 (2010) arXiv:0910.4319 [hep-th]CrossRefADSGoogle Scholar
  23. 23.
    L. Bellantuono, P. Colangelo, F. Giannuzzi, Eur. Phys. J. C 74, 2830 (2014) arXiv:1402.5308 [hep-ph]CrossRefADSGoogle Scholar
  24. 24.
    S.P. Bartz, T. Jacobson, Phys. Rev. D 94, 075022 (2016) arXiv:1607.05751 [hep-ph]CrossRefADSGoogle Scholar
  25. 25.
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000) arXiv:hep-th/9905111MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    A. Vega, I. Schmidt, Phys. Rev. D 78, 017703 (2008) arXiv:0806.2267 [hep-ph]CrossRefADSGoogle Scholar
  27. 27.
    T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 85, 076003 (2012) arXiv:1108.0346 [hep-ph]CrossRefADSGoogle Scholar
  28. 28.
    A. Vega, P. Cabrera, Phys. Rev. D 93, 114026 (2016) arXiv:1601.05999 [hep-ph]CrossRefADSGoogle Scholar
  29. 29.
    P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri, Phys. Rev. D 78, 055009 (2008) arXiv:0807.1054 [hep-ph]CrossRefADSGoogle Scholar
  30. 30.
    L.X. Cui, Z. Fang, Y.L. Wu, Chin. Phys. C 40, 063101 (2016) arXiv:1404.0761 [hep-ph]CrossRefADSGoogle Scholar
  31. 31.
    P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 80, 094019 (2009) arXiv:0909.1534 [hep-ph]CrossRefADSGoogle Scholar
  32. 32.
    N. Ishii, H. Suganuma, H. Matsufuru, Phys. Rev. D 66, 094506 (2002) arXiv:hep-lat/0206020CrossRefADSGoogle Scholar
  33. 33.
    X.F. Meng, G. Li, Y. Chen, C. Liu, Y.B. Liu, J.P. Ma, J.B. Zhang, Phys. Rev. D 80, 114502 (2009) arXiv:0903.1991 [hep-lat]CrossRefADSGoogle Scholar
  34. 34.
    M. Fujita, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 80, 035001 (2009) arXiv:0903.2316 [hep-ph]CrossRefADSGoogle Scholar
  35. 35.
    A. Vega, I. Schmidt, Phys. Rev. D 79, 055003 (2009) arXiv:0811.4638 [hep-ph]CrossRefADSGoogle Scholar
  36. 36.
    H. Forkel, Phys. Lett. B 694, 252 (2011) arXiv:1007.4341 [hep-ph]CrossRefADSGoogle Scholar
  37. 37.
    T. Gutsche, V.E. Lyubovitskij, I. Schmidt, Phys. Rev. D 96, 034030 (2017) arXiv:1706.07716 [hep-ph]CrossRefADSGoogle Scholar
  38. 38.
    G. Arfken, H. Weber, H. Weber, Mathematical Methods for Physicist, 5th Edition (Academic Press, 2001)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Instituto de Física y AstronomíaUniversidad de ValparaísoValparaísoChile

Personalised recommendations