Advertisement

Precision electron-capture energy in 202Pb and its relevance for neutrino mass determination

  • A. WelkerEmail author
  • P. Filianin
  • N. A. S. Althubiti
  • D. Atanasov
  • K. Blaum
  • T. E. Cocolios
  • S. Eliseev
  • F. Herfurth
  • S. Kreim
  • D. Lunney
  • V. Manea
  • D. Neidherr
  • Yu. Novikov
  • M. Rosenbusch
  • L. Schweikhard
  • F. Wienholtz
  • R. N. Wolf
  • K. Zuber
Regular Article - Experimental Physics

Abstract.

Within the framework of an extensive programme devoted to the search for alternative candidates for the neutrino mass determination, the atomic mass difference between 202Pb and 202Tl has been measured with the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN. The obtained value \( Q_{{\rm EC}} = 38.8(43)\) keV is three times more precise than the AME2012 value. While it will probably not lead to a replacement of 163Ho in modern experiments on the determination of the electron-neutrino mass, the electron capture in 202Pb would however allow a determination of the electron-neutrino mass on the few-eV level using a cryogenic micro-calorimeter.

References

  1. 1.
    Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Q.R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    E.W. Otten et al., Rep. Prog. Phys. 71, 086201 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    P.T. Springer et al., Phys. Rev. A 35, 679 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    S. Yasumi et al., Phys. Lett. B 181, 169 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    A.V. Kostelecký et al., Rev. Mod. Phys. 83, 11 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    E. Kugler, Hyperfine Interact. 129, 23 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    T. Andersen et al., Phys. Lett. B 113, 72 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    B. Jonson et al., Nucl. Phys. A 396, 479 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    K. Blaum et al., Contemp. Phys. 51, 149 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    K. Blaum et al., Phys. Scr. T152, 014017 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    P.-O. Ranitzsch et al., J. Low Temp. Phys. 167, 1004 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S.F. King et al., New J. Phys. 16, 045018 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    H.-J. Kluge et al., Nucl. Phys. News 17, 36 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Eliseev et al., Phys. Lett. B 693, 426 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    S. Eliseev et al., Phys. Rev. Lett. 115, 062501 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    L. Gastaldo et al., J. Low Temp. Phys. 176, 876 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    B. Alpert et al., Eur. Phys. J. C 75, 112 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    M. Croce et al., J. Low Temp. Phys. 176, 1009 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    H.-J. Kluge et al., Nucl. Phys. News 17, 36 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Rujula et al., Phys. Lett. 118, 429 (1982)CrossRefGoogle Scholar
  22. 22.
    A. Faessler et al., Phys. Rev. C 92, 045505 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A.D. Rú, J. High. Energy Phys. 2016, 15 (2016) DOI:10.1007/JHEP05(2016)015 Google Scholar
  24. 24.
    G. Audi et al., Chin. Phys. C 36, 1157 (2012)CrossRefGoogle Scholar
  25. 25.
    C. Böhm et al., Phys. Rev. C 90, 044307 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    R. Wolf et al., Int. J. Mass Spectrom. 349, 123 (2013)CrossRefGoogle Scholar
  29. 29.
    E. Hagebo et al., Nucl. Instrum. Methods Phys. Res. Sect. B 70, 165 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    S. Rothe et al., Nucl. Instrum. Methods Phys. Res. Sect. B 376, 91 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    F. Herfurth et al., Nucl. Instrum. Methods A 469, 254 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    R. Wolf et al., Nucl. Instrum. Methods Phys. Res. A 686, 82 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    F. Wienholtz et al., Phys. Scr. 2015, 014068 (2015)CrossRefGoogle Scholar
  34. 34.
    H. Raimbault-Hartmann et al., Nucl. Instrum. Methods B 126, 378 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    G. Savard et al., Phys. Lett. A 158, 247 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    G. Gräff et al., Z. Phys. A 297, 35 (1980)ADSCrossRefGoogle Scholar
  37. 37.
    M. Kretzschmar, Int. J. Mass Spectrum 264, 122 (2007)CrossRefGoogle Scholar
  38. 38.
    S. George et al., Phys. Rev. Lett. 98, 162501 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    G. Audi et al., Chin. Phys. C 41, 030001 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    F. Larkins, At. Data Nucl. Data Tables 20, 311 (1977)ADSCrossRefGoogle Scholar
  41. 41.
    J. Repp et al., Appl. Phys. B 107, 983 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    C. Roux et al., Appl. Phys. B 107, 997 (2012)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • A. Welker
    • 1
    • 2
    Email author
  • P. Filianin
    • 3
    • 4
  • N. A. S. Althubiti
    • 5
  • D. Atanasov
    • 3
  • K. Blaum
    • 3
  • T. E. Cocolios
    • 5
    • 6
  • S. Eliseev
    • 3
  • F. Herfurth
    • 7
  • S. Kreim
    • 3
  • D. Lunney
    • 8
  • V. Manea
    • 1
  • D. Neidherr
    • 7
  • Yu. Novikov
    • 3
    • 4
    • 9
  • M. Rosenbusch
    • 10
  • L. Schweikhard
    • 10
  • F. Wienholtz
    • 10
  • R. N. Wolf
    • 3
    • 11
  • K. Zuber
    • 2
  1. 1.CERNGenevaSwitzerland
  2. 2.Technische Universität DresdenDresdenGermany
  3. 3.Max-Planck-Institut für KernphysikHeidelbergGermany
  4. 4.Petersburg Nuclear Physics InstituteGatchinaRussia
  5. 5.School of Physics & AstronomyThe University of ManchesterManchesterUK
  6. 6.KU Leuven, Instituut voor Kern- en StralingsfysicaLeuvenBelgium
  7. 7.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  8. 8.CSNSM-IN2P3-CNRS, Université Paris-SudOrsayFrance
  9. 9.Physics Faculty of St. Petersburg State UniversityPeterhofRussia
  10. 10.Ernst-Moritz-Arndt-Universität, Institut für PhysikGreifswaldGermany
  11. 11.ARC Centre of Excellence for Engineered Quantum SystemsThe University of SydneySydneyAustralia

Personalised recommendations