Advertisement

Smoothed square well potential

  • P. Salamon
  • T. VertseEmail author
Regular Article - Theoretical Physics

Abstract.

The classical square well potential is smoothed with a finite range smoothing function in order to get a new simple strictly finite range form for the phenomenological nuclear potential. The smoothed square well form becomes exactly zero smoothly at a finite distance, in contrast to the Woods-Saxon form. If the smoothing range is four times the diffuseness of the Woods-Saxon shape both the central and the spin-orbit terms of the Woods-Saxon shape are reproduced reasonably well. The bound single-particle energies in a Woods-Saxon potential can be well reproduced with those in the smoothed square well potential. The same is true for the complex energies of the narrow resonances.

References

  1. 1.
    P. Salamon, R.G. Lovas, R.M. Id Betan, T. Vertse, L. Balkay, Phys. Rev. C 89, 054609 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    P. Salamon, T. Vertse, Phys. Rev. C 77, 037302 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    F.G. Perey, Phys. Rev. 131, 745 (1963)ADSCrossRefGoogle Scholar
  4. 4.
    R.D. Woods, D.S. Saxon, Phys. Rev. 95, 577 (1954)ADSCrossRefGoogle Scholar
  5. 5.
    Gy. Bencze, Comment. Phys. Math. 31, 4 (1966)Google Scholar
  6. 6.
    P. Salamon, Á. Baran, T. Vertse, Nucl. Phys. A 952, 1 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    P. Salamon, A.T. Kruppa, T. Vertse, Phys. Rev. C 81, 064322 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    I. Nándori, JHEP 04, 150 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    I. Nándori, I.G. Márián, V. Bacsó, Phys. Rev. D 89, 047701 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    I.G. Márián, U.D. Jentschura, I. Nándori, J. Phys. G 41, 055001 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    T. Vertse, K.F. Pál, Z. Balogh, Comput. Phys. Commun. 27, 309 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    P. Curutchet, T. Vertse, R.J. Liotta, Phys. Rev. C 39, 1020 (1989)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute for Nuclear Research Hungarian Academy of Sciences (ATOMKI)DebrecenHungary
  2. 2.University of Debrecen, Faculty of InformaticsDebrecenHungary

Personalised recommendations