Advertisement

The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies

  • Carlos Granados
  • Stefan Leupold
  • Elisabetta Perotti
Open Access
Regular Article - Theoretical Physics

Abstract.

Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).

References

  1. 1.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, C.E. Carlson, Eur. Phys. J. A 51, 79 (2015) arXiv:1503.01452 ADSCrossRefGoogle Scholar
  3. 3.
    R. Pohl et al., Nature 466, 213 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    C.E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015) arXiv:1502.05314 ADSCrossRefGoogle Scholar
  5. 5.
    R. Frisch, O. Stern, Z. Phys. 85, 4 (1933)ADSCrossRefGoogle Scholar
  6. 6.
    V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007) arXiv:hep-ph/0609004 ADSCrossRefGoogle Scholar
  7. 7.
    M. Gell-Mann, Phys. Lett. 8, 214 (1964)ADSCrossRefGoogle Scholar
  8. 8.
    B. Kubis, U.G. Meißner, Eur. Phys. J. C 18, 747 (2001) arXiv:hep-ph/0010283 ADSCrossRefGoogle Scholar
  9. 9.
    S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    PANDA Collaboration (M.F.M. Lutz), arXiv:0903.3905 (2009)
  11. 11.
    HADES Collaboration (M. Lorenz et al.), J. Phys. Conf. Ser. 668, 012022 (2016)CrossRefGoogle Scholar
  12. 12.
    T. Husek, S. Leupold, in preparation (2017)Google Scholar
  13. 13.
    S. Weinberg, Physica A 96, 327 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    S. Scherer, Adv. Nucl. Phys. 27, 277 (2003) arXiv:hep-ph/0210398 Google Scholar
  17. 17.
    S. Scherer, M.R. Schindler, Lect. Notes Phys. 830, 1 (2012)CrossRefGoogle Scholar
  18. 18.
    V. Pascalutsa, M. Vanderhaeghen, Phys. Lett. B 636, 31 (2006) arXiv:hep-ph/0511261 ADSCrossRefGoogle Scholar
  19. 19.
    T. Ledwig, J. Martin Camalich, L.S. Geng, M.J. Vicente Vacas, Phys. Rev. D 90, 054502 (2014) arXiv:1405.5456 ADSCrossRefGoogle Scholar
  20. 20.
    J.J. Sakurai, Currents and Mesons (University of Chicago Press, Chicago, 1969)Google Scholar
  21. 21.
    G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001) arXiv:hep-ph/0103088 ADSCrossRefGoogle Scholar
  22. 22.
    R. Garcia-Martin, R. Kaminski, J.R. Pelaez, J. Ruiz de Elvira, F.J. Yndurain, Phys. Rev. D 83, 074004 (2011) arXiv:1102.2183 ADSCrossRefGoogle Scholar
  23. 23.
    C. Hanhart, Phys. Lett. B 715, 170 (2012) arXiv:1203.6839 ADSCrossRefGoogle Scholar
  24. 24.
    S.P. Schneider, B. Kubis, F. Niecknig, Phys. Rev. D 86, 054013 (2012) arXiv:1206.3098 ADSCrossRefGoogle Scholar
  25. 25.
    F. Stollenwerk, C. Hanhart, A. Kupsc, U. Meißner, A. Wirzba, Phys. Lett. B 707, 184 (2012) arXiv:1108.2419 ADSCrossRefGoogle Scholar
  26. 26.
    C. Hanhart, A. Kupsc, U.G. Meißner, F. Stollenwerk, A. Wirzba, Eur. Phys. J. C 73, 2668 (2013) arXiv:1307.5654 ADSCrossRefGoogle Scholar
  27. 27.
    F. Niecknig, B. Kubis, S.P. Schneider, Eur. Phys. J. C 72, 2014 (2012) arXiv:1203.2501 ADSCrossRefGoogle Scholar
  28. 28.
    X.W. Kang, B. Kubis, C. Hanhart, U.G. Meißner, Phys. Rev. D 89, 053015 (2014) arXiv:1312.1193 ADSCrossRefGoogle Scholar
  29. 29.
    W.R. Frazer, J.R. Fulco, Phys. Rev. 117, 1609 (1960)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Mergell, U.G. Meißner, D. Drechsel, Nucl. Phys. A 596, 367 (1996) arXiv:hep-ph/9506375 ADSCrossRefGoogle Scholar
  31. 31.
    M. Hoferichter, B. Kubis, J. Ruiz de Elvira, H.W. Hammer, U.G. Meißner, Eur. Phys. J. A 52, 331 (2016) arXiv:1609.06722 ADSCrossRefGoogle Scholar
  32. 32.
    R. Omnes, Nuovo Cimento 8, 316 (1958)CrossRefGoogle Scholar
  33. 33.
    S. Mandelstam, Phys. Rev. Lett. 4, 84 (1960)ADSCrossRefGoogle Scholar
  34. 34.
    M. Jacob, G. Wick, Ann. Phys. 7, 404 (1959)ADSCrossRefGoogle Scholar
  35. 35.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus, Cambridge, Massachusetts, 1995)Google Scholar
  36. 36.
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.G. Meißner, Phys. Rep. 625, 1 (2016) arXiv:1510.06039 ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002) arXiv:nucl-th/0105042 ADSCrossRefGoogle Scholar
  38. 38.
    M. Hoferichter, C. Ditsche, B. Kubis, U.G. Meißner, JHEP 06, 063 (2012) arXiv:1204.6251 ADSCrossRefGoogle Scholar
  39. 39.
    U.G. Meißner, S. Steininger, Nucl. Phys. B 499, 349 (1997) arXiv:hep-ph/9701260 ADSCrossRefGoogle Scholar
  40. 40.
    B. Kubis, PhD Thesis, Forschungszentrum Jülich (2003)Google Scholar
  41. 41.
    E.E. Jenkins, A.V. Manohar, Phys. Lett. B 259, 353 (1991)ADSCrossRefGoogle Scholar
  42. 42.
    V. Pascalutsa, R. Timmermans, Phys. Rev. C 60, 042201 (1999) arXiv:nucl-th/9905065 ADSCrossRefGoogle Scholar
  43. 43.
    R.F. Dashen, A.V. Manohar, Phys. Lett. B 315, 425 (1993) arXiv: hep-ph/9307241 ADSCrossRefGoogle Scholar
  44. 44.
    J.A. Oller, M. Verbeni, J. Prades, JHEP 09, 079 (2006) arXiv: hep-ph/0608204 ADSCrossRefGoogle Scholar
  45. 45.
    M. Frink, U.G. Meißner, Eur. Phys. J. A 29, 255 (2006) arXiv:hep-ph/0609256 ADSCrossRefGoogle Scholar
  46. 46.
    S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Tomozawa, Nuovo Cimento A 46, 707 (1966)ADSCrossRefGoogle Scholar
  48. 48.
    U.G. Meißner, arXiv:hep-ph/9711365 (1997)
  49. 49.
    N. Wies, J. Gegelia, S. Scherer, Phys. Rev. D 73, 094012 (2006) arXiv:hep-ph/0602073 ADSCrossRefGoogle Scholar
  50. 50.
    S.J. Puglia, M.J. Ramsey-Musolf, S.L. Zhu, Phys. Rev. D 63, 034014 (2001) arXiv:hep-ph/0008140 ADSCrossRefGoogle Scholar
  51. 51.
    A2 Collaboration (P. Adlarson et al.), Phys. Rev. C 95, 025202 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    M. Hoferichter, B. Kubis, S. Leupold, F. Niecknig, S.P. Schneider, Eur. Phys. J. C 74, 3180 (2014) arXiv:1410.4691 ADSCrossRefGoogle Scholar
  53. 53.
    J.M. Alarcón, A.N. Hiller Blin, C. Weiss, arXiv:1701.05871 (2017)
  54. 54.
    J.M. Alarcón, A.N. Hiller Blin, M.J. Vicente Vacas, C. Weiss, arXiv:1703.04534 (2017)
  55. 55.
    C. Granados, C. Weiss, JHEP 01, 092 (2014) arXiv:1308.1634 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Carlos Granados
    • 1
    • 2
  • Stefan Leupold
    • 1
  • Elisabetta Perotti
    • 1
  1. 1.Institutionen för fysik och astronomiUppsala UniversitetUppsalaSweden
  2. 2.Jefferson LabNewport NewsUSA

Personalised recommendations