Photodisintegration average cross sections of dysprosium p-nuclei near (\(\gamma\),n) reaction threshold

  • E. Vagena
  • S. Stoulos
Regular Article - Experimental Physics


First measured cross section data on (\(\gamma\),n) reaction of dysprosium proton-rich nuclei 156Dy and 158Dy was experimentally determined via activation methods using a bremsstrahlung photons beam delivered by an electron medical accelerator. An integrated cross section of \( 144\pm 44\) mb is calculated for the 156Dy (\(\gamma\),n) reaction at the energy interval 9.4-14MeV while for the 158Dy (\(\gamma\),n) reaction at the energy interval 9.1-14 MeV is estimated as \(168\pm 42\) mb. Moreover, theoretical calculations have been performed for all Dy isotopes employing the TALYS code. The effect of the nuclear-physics input parameters (\(\gamma\)-ray strength function, nuclear level densities) on the cross section calculations has been studied to successfully reproduce the experimental data. The effective cross section estimated using the TALYS code ranges between 115 and 206 mb for 156Dy (\( \gamma\),n) and between 124 and 206mb for 158Dy (\(\gamma\),n) reaction depending on the \(\gamma\)-ray strength function used.


  1. 1.
    F. Kappeler, R. Gallino, S. Bisterzo, W. Aoki, Rev. Mod. Phys. 83, 157 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    M. Arnould, S. Goriely, Phys. Rep. 384, 1 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    C. Travaglio, F.K. Ropke, R. Gallinod, W. Hillebrandt, Astrophys. J. 739, 93 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    P. Mohr, S. Brieger, G. Witucki, M. Maetz, Nucl. Instrum. Methods A 580, 1201 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A. Varlamov, INDC (NDS)-394 (1999)Google Scholar
  7. 7.
    A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.6, A Nuclear Reaction Program, (NRG Petten, The Netherlands, 2008)
  8. 8.
    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)ADSCrossRefGoogle Scholar
  9. 9.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    E. Vagena, S. Stoulos, M. Manolopoulou, Nucl. Instrum. Methods A 806, 271 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    C.A. Kalfas, M. Axiotis, C. Tsabaris, Nucl. Instrum. Methods A 830, 265 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    IAEA-EXFOR, Experimental nuclear reaction data,
  13. 13.
    S. Agosteo, A. Foglio-Para, B. Maggioni, V. Sangiust, S. Terrani, G. Borasi, Health Phys. 68, 27 (1995)CrossRefGoogle Scholar
  14. 14.
    T. Rauscher, Astrophys. J. Suppl. Ser. 201, 26 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    E. Khan, S. Goriely, D. Allard et al., Astropart. Phys. 23, 191 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    R. Capote, M. Herman, P. Oblozinsky et al., Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    E. Vagena, S. Stoulos, Nucl. Phys. A 957, 259 (2017)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Nuclear Physics Lab., School of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations