Prospects for direct neutron capture measurements on s-process branching point isotopes

  • C. Guerrero
  • C. Domingo-Pardo
  • F. Käppeler
  • J. Lerendegui-Marco
  • F. R. Palomo
  • J. M. Quesada
  • R. Reifarth
Open Access
Letter
  • 230 Downloads

Abstract.

The neutron capture cross sections of several unstable key isotopes acting as branching points in the s -process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure directly due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual \(({\rm n},\gamma )\) measurement, where high neutron fluxes and effective background rejection capabilities are required. At present there are about 21 relevant s-process branching point isotopes whose cross section could not be measured yet over the neutron energy range of interest for astrophysics. However, the situation is changing with some very recent developments and upcoming technologies. This work introduces three techniques that will change the current paradigm in the field: the use of \(\gamma\)-ray imaging techniques in \(({\rm n},\gamma )\) experiments, the production of moderated neutron beams using high-power lasers, and double capture experiments in Maxwellian neutron beams.

References

  1. 1.
    F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, Rev. Mod. Phys. 83, 157 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    R. Reifarth, C. Lederer, F. Käppeler, J. Phys. G: Nucl. Part. Phys. 41, 053101 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    J. Avila et al., Astrophys. J. 768, 1 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    K. Cosner, J.W. Truran, Astrophys. Space Sci. 78, 85 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    T. Rauscher, Astrophys. J. Lett. 755, 1 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    G. Tagliente et al., Phys. Rev. C 87, 014622 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    G. Raskin et al., Astron. Astrophys. 526, A69 (2011)CrossRefGoogle Scholar
  8. 8.
    P. Neyskens, Nature , 517 (2015)Google Scholar
  9. 9.
    Astronomy with Radioactivities, edited by R. Diehl, D.H. Hartmann, Nikos Prantzos, Lect. Notes Phys., 812 (Springer, Berlin, 2011) pp. 83--152Google Scholar
  10. 10.
    A. Koloczek et al., At. Data Nucl. Data Tables 108, 1 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    C. Lederer et al., Phys. Rev. Lett. 110, 022501 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    C. Lederer et al., Phys. Rev. C 89, 025810 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    M. Weigand et al., Phys. Rev. C 92, 045810 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    U. Abbondanno et al., Phys. Rev. Lett. 93, 161103 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    C. Guerrero et al., Eur. Phys. J. A 49, 27 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    C. Weiss et al., Nucl. Instrum. Methods A 799, 90 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    R. Reifarth, Y.A. Litvinov, Phys. Rev. ST Accel. Beams 17, 014701 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    R. Raut et al., Phys. Rev. Lett. 111, 112501 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    S.Q. Yan et al., Phys. Rev. C 94, 015804 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    C. Domingo-Pardo, Nucl. Instrum. Methods A 825, 78 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    V. Herrero-Bosch et al., IEEE Trans. Nucl. Sci. 58, 1641 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    D.L. Pérez-Magán et al., Nucl. Instrum. Methods A 823, 107 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J. Alvarez et al., Phys. Procedia 60, 29 (2014)CrossRefGoogle Scholar
  25. 25.
    D. Klir et al., Phys. Plasmas 22, 093117 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    M. Roth et al., Phys. Rev. Lett. 110, 044802 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    ELI--Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers Whitebook, edited by Gérard A. Mourou, Georg Korn, Wolfgang Sandner, John L. Collier (THOSS Media GmbH, 2011)Google Scholar
  28. 28.
    R. Reifarth et al., Publ. Astron. Soc. Aust. 26, 255 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    C. Tuniz, Radiat. Phys. Chem. 61, 317 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    G. Feinberg et al., Nucl. Phys. A 827, 590c (2009)ADSCrossRefGoogle Scholar
  31. 31.
    I. Dillman et al., Nucl. Data Sheets 120, 171 (2014)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • C. Guerrero
    • 1
  • C. Domingo-Pardo
    • 2
  • F. Käppeler
    • 3
  • J. Lerendegui-Marco
    • 1
  • F. R. Palomo
    • 4
  • J. M. Quesada
    • 1
  • R. Reifarth
    • 5
  1. 1.Dpto. de Física Atómica, Molecular y NuclearUniversidad de SevillaSevillaSpain
  2. 2.Instituto de Física Corpuscular(CSIC-Universidad de Valencia)ValenciaSpain
  3. 3.Institut für KernphysikKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Dpto. de Ingeniería ElectrónicaUniversidad de SevillaSevillaSpain
  5. 5.Goethe-Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations