Advertisement

Photoproduction of \(\eta\) mesons from the neutron: Cross sections and double polarization observable E

  • The CBELSA/TAPS Collaboration
  • L. Witthauer
  • M. Dieterle
  • F. Afzal
  • A. V. Anisovich
  • B. Bantes
  • D. Bayadilov
  • R. Beck
  • M. Bichow
  • K. -T. Brinkmann
  • S. Böse
  • Th. Challand
  • V. Crede
  • H. Dutz
  • H. Eberhardt
  • D. Elsner
  • R. Ewald
  • K. Fornet-Ponse
  • St. Friedrich
  • F. Frommberger
  • Ch. Funke
  • St. Goertz
  • M. Gottschall
  • A. Gridnev
  • M. Grüner
  • E. Gutz
  • D. Hammann
  • Ch. Hammann
  • J. Hannappel
  • J. Hartmann
  • W. Hillert
  • Ph. Hoffmeister
  • Ch. Honisch
  • T. Jude
  • D. Kaiser
  • H. Kalinowsky
  • F. Kalischewski
  • S. Kammer
  • A. Käser
  • I. Keshelashvili
  • P. Klassen
  • V. Kleber
  • F. Klein
  • K. Koop
  • B. KruscheEmail author
  • M. Lang
  • I. Lopatin
  • Ph. Mahlberg
  • K. Makonyi
  • V. Metag
  • W. Meyer
  • J. Müller
  • J. Müllers
  • M. Nanova
  • V. Nikonov
  • D. Piontek
  • G. Reicherz
  • T. Rostomyan
  • A. Sarantsev
  • Ch. Schmidt
  • H. Schmieden
  • T. Seifen
  • V. Sokhoyan
  • K. Spieker
  • A. Thiel
  • U. Thoma
  • M. Urban
  • H. van Pee
  • N. K. Walford
  • D. Walther
  • Ch. Wendel
  • D. Werthmüller
  • A. Wilson
  • A. Winnebeck
Regular Article - Experimental Physics

Abstract.

Results from measurements of the photoproduction of \(\eta\) mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the \(\eta\rightarrow 3\pi^{0}\rightarrow 6\gamma\) decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of \(\gamma n\rightarrow n\eta\). The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow \(P_{11}\) state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable E. Both data sets together were also used to extract the helicity-dependent cross sections \(\sigma_{1/2}\) and \(\sigma_{3/2}\). The narrow structure in the excitation function of \(\gamma n\rightarrow n\eta\) appears associated with the helicity-1/2 component of the reaction.

References

  1. 1.
    E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    V. Crede, W. Roberts, Rep. Prog. Phys. 76, 076301 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    V.D. Burkert, T.-S. Lee, Int. J. Mod. Phys. E 13, 1035 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    B. Krusche, Eur. Phys. J. ST 198, 199 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Dieterle et al., Phys. Rev. Lett. 112, 142001 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    A. Käser et al., Phys. Lett. B 748, 244 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    B. Krusche et al., Phys. Rev. Lett. 74, 3736 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    B. Krusche et al., Phys. Lett. B 397, 171 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    J. Ajaka et al., Phys. Rev. Lett. 81, 1797 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    D. Elsner et al., Eur. Phys. J. A 33, 147 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    O. Bartalini et al., Eur. Phys. J. A 33, 169 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    M. Dugger et al., Phys. Rev. Lett. 89, 222002 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    M. Williams et al., Phys. Rev. C 80, 045213 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    V. Crede et al., Phys. Rev. Lett. 94, 012004 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    O. Bartholomy et al., Eur. Phys. J. A 33, 133 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    V. Crede et al., Phys. Rev. C 80, 055202 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    F. Renard et al., Phys. Lett. B 528, 215 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    T. Nakabayashi et al., Phys. Rev. C 74, 035202 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    E.F. McNicoll et al., Phys. Rev. C 82, 035208 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    C.S. Akondi et al., Phys. Rev. Lett. 113, 102001 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    I. Senderovich et al., Phys. Lett. B 755, 64 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    B. Krusche, C. Wilkin, Prog. Part. Nucl. Phys. 80, 43 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    B. Krusche et al., Phys. Lett. B 358, 40 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    P. Hoffmann-Rothe et al., Phys. Rev. Lett. 78, 4697 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    J. Weiss et al., Eur. Phys. J. A 11, 371 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    J. Weiss et al., Eur. Phys. J. A 16, 275 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    V. Hejny et al., Eur. Phys. J. A 6, 83 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    V. Hejny et al., Eur. Phys. J. A 13, 493 (2002)ADSGoogle Scholar
  32. 32.
    M. Pfeiffer et al., Phys. Rev. Lett. 92, 252001 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    F. Pheron et al., Phys. Lett. B 709, 21 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    V. Kuznetsov et al., Phys. Lett. B 647, 23 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    I. Jaegle et al., Phys. Rev. Lett. 100, 252002 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    I. Jaegle et al., Eur. Phys. J. A 47, 89 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    F. Miyahara et al., Prog. Theor. Phys. Suppl. 168, 90 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    D. Werthmüller et al., Phys. Rev. Lett. 111, 232001 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    L. Witthauer et al., Eur. Phys. J. A 49, 154 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    D. Werthmüller et al., Phys. Rev. C 90, 015205 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    M.V. Polyakov, A. Rathke, Eur. Phys. J. A 18, 691 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    R.A. Arndt et al., Phys Rev. C 69, 035208 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    Ki-Seok Choi, Seung-Il Nam, Atsuhi Hosaka, Hyun-Chul Kim, Phys. Lett. B 636, 253 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    A. Fix, L. Tiator, M.V. Polyakov, Eur. Phys. J. A 32, 311 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    M. Shrestha, D.M. Manley, Phys. Rev. C 86, 055203 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    K.A. Olive et al., Chin. Phys. C 38, 090001 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    C. Patrignani et al., Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    V. Shklyar, H. Lenske, U. Mosel, Phys. Lett. B 650, 172 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    R. Shyam, O. Scholten, Phys. Rev. C 78, 065201 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    M. Döring, K. Nakayama, Phys. Lett. B 683, 145 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    A.V. Anisovich et al., Eur. Phys. J. A 51, 72 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    V. Kuznetsov et al., Phys. Rev. C 91, 042201(R) (2015)ADSCrossRefGoogle Scholar
  53. 53.
    D. Werthmüller et al., Phys. Rev. C 92, 069801 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    A. Fantini et al., Phys. Rev. C 78, 015203 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    L. Witthauer et al., Phys. Rev. Lett. 117, 132502 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    W. Hillert, Eur. Phys. J. A 28, 139 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    S. Kammer, Strahlpolarimetrie am CBELSA/TAPS Experiment, PhD Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, urn:nbn:de:hbz:5N-20564 (2009)Google Scholar
  58. 58.
    H. Olsen, L.C. Maximon, Phys. Rev. 114, 887 (1959)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    D. Elsner et al., Eur. Phys. J. A 39, 373 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    C. Bradtke et al., Nucl. Instrum. Methods A 436, 430 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    E. Aker et al., Nucl. Instrum. Methods A 321, 69 (1992)ADSCrossRefGoogle Scholar
  62. 62.
    G. Suft et al., Nucl. Instrum. Methods A 538, 416 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)ADSCrossRefGoogle Scholar
  64. 64.
    A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994)ADSCrossRefGoogle Scholar
  65. 65.
    E. Gutz et al., Eur. Phys. J. A 50, 74 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    M. Lacombe et al., Phys. Lett. B 101, 139 (1981)ADSCrossRefGoogle Scholar
  67. 67.
    R. Brun, GEANT, Cern/DD/ee/84-1Google Scholar
  68. 68.
    I. Froehlich, arXiv:0708.2382v2 (2007)
  69. 69.
    H. Denizli et al., Phys. Rev. C 76, 015204 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    W.-T. Chiang et al., Nucl. Phys. A 700, 429 (2002)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • The CBELSA/TAPS Collaboration
  • L. Witthauer
    • 1
  • M. Dieterle
    • 1
  • F. Afzal
    • 2
  • A. V. Anisovich
    • 2
    • 4
  • B. Bantes
    • 3
  • D. Bayadilov
    • 2
    • 4
  • R. Beck
    • 2
  • M. Bichow
    • 5
  • K. -T. Brinkmann
    • 2
    • 7
  • S. Böse
    • 2
  • Th. Challand
    • 1
  • V. Crede
    • 6
  • H. Dutz
    • 3
  • H. Eberhardt
    • 3
  • D. Elsner
    • 3
  • R. Ewald
    • 3
  • K. Fornet-Ponse
    • 3
  • St. Friedrich
    • 7
  • F. Frommberger
    • 3
  • Ch. Funke
    • 2
  • St. Goertz
    • 3
  • M. Gottschall
    • 2
  • A. Gridnev
    • 4
  • M. Grüner
    • 2
  • E. Gutz
    • 2
    • 7
  • D. Hammann
    • 3
  • Ch. Hammann
    • 2
  • J. Hannappel
    • 3
  • J. Hartmann
    • 2
  • W. Hillert
    • 3
  • Ph. Hoffmeister
    • 2
  • Ch. Honisch
    • 2
  • T. Jude
    • 3
  • D. Kaiser
    • 2
  • H. Kalinowsky
    • 2
  • F. Kalischewski
    • 2
  • S. Kammer
    • 3
  • A. Käser
    • 1
  • I. Keshelashvili
    • 1
  • P. Klassen
    • 2
  • V. Kleber
    • 3
  • F. Klein
    • 3
  • K. Koop
    • 2
  • B. Krusche
    • 1
    Email author
  • M. Lang
    • 2
  • I. Lopatin
    • 4
  • Ph. Mahlberg
    • 2
  • K. Makonyi
    • 7
  • V. Metag
    • 7
  • W. Meyer
    • 5
  • J. Müller
    • 2
  • J. Müllers
    • 2
  • M. Nanova
    • 7
  • V. Nikonov
    • 2
    • 4
  • D. Piontek
    • 2
  • G. Reicherz
    • 5
  • T. Rostomyan
    • 1
  • A. Sarantsev
    • 2
    • 4
  • Ch. Schmidt
    • 2
  • H. Schmieden
    • 3
  • T. Seifen
    • 2
  • V. Sokhoyan
    • 2
  • K. Spieker
    • 2
  • A. Thiel
    • 2
  • U. Thoma
    • 2
  • M. Urban
    • 2
  • H. van Pee
    • 2
  • N. K. Walford
    • 1
  • D. Walther
    • 2
  • Ch. Wendel
    • 2
  • D. Werthmüller
    • 1
  • A. Wilson
    • 2
    • 6
  • A. Winnebeck
    • 2
  1. 1.Department of PhysicsUniversity of BaselBaselSwitzerland
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik der Universität BonnBonnGermany
  3. 3.Physikalisches InstitutUniversität BonnBonnGermany
  4. 4.National Research Centre “Kurchatov Institute”Petersburg Nuclear Physics InstituteGatchinaRussia
  5. 5.Institut für Experimentalphysik IRuhr-Universität BochumBochumGermany
  6. 6.Department of PhysicsFlorida State UniversityTallahasseeUSA
  7. 7.II. Physikalisches InstitutUniversität GiessenGiessenGermany

Personalised recommendations