Quartet correlations in N = Z nuclei induced by realistic two-body interactions

  • M. Sambataro
  • N. SandulescuEmail author
Regular Article - Theoretical Physics


Two variational quartet models previously employed in a treatment of pairing forces are extended to the case of a general two-body interaction. One model approximates the nuclear states as a condensate of identical quartets with angular momentum J = 0 and isospin T = 0 while the other let these quartets to be all different from each other. With these models we investigate the role of alpha-like quartet correlations both in the ground state and in the lowest J = 0 , T = 0 excited states of even-even N = Z nuclei in the sd -shell. We show that the ground-state correlations of these nuclei can be described to a good extent in terms of a condensate of alpha-like quartets. This turns out to be especially the case for the nucleus 32 S for which the overlap between this condensate and the shell model wave function is found close to one. In the same nucleus, a similar overlap is found also in the case of the first excited 0+ state. No clear correspondence is observed instead between the second excited states of the quartet models and the shell model eigenstates in all the cases examined.


  1. 1.
    A. Bohr, B.R. Mottelson, D. Pines, Phys. Rev. 110, 936 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    V.G. Soloviev, Nucl. Phys. 18, 161 (1960)CrossRefGoogle Scholar
  4. 4.
    B.H. Flowers, M. Vujicić, Nucl. Phys. 49, 586 (1963)CrossRefGoogle Scholar
  5. 5.
    B. Bremond, J.G. Valatin, Nucl. Phys. 41, 640 (1963)CrossRefGoogle Scholar
  6. 6.
    J. Eichler, M. Yamamura, Nucl. Phys. A 182, 33 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    R.R. Chasman, Phys. Lett. B 524, 81 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    R.R. Chasman, Phys. Lett. B 577, 47 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    R.A. Senkov, V. Zelevinsky, Phys. At. Nucl. 74, 1267 (2011)CrossRefGoogle Scholar
  10. 10.
    N. Sandulescu, D. Negrea, J. Dukelsky, C.W. Johnson, Phys. Rev. C 85, 061303(R) (2012)ADSCrossRefGoogle Scholar
  11. 11.
    N. Sandulescu, D. Negrea, C.W. Johnson, Phys. Rev. C 86, 041302(R) (2012)ADSCrossRefGoogle Scholar
  12. 12.
    D. Negrea, N. Sandulescu, Phys. Rev. C 90, 024322 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    M. Sambataro, N. Sandulescu, Phys. Rev. C 88, 061303(R) (2013)ADSCrossRefGoogle Scholar
  14. 14.
    N. Sandulescu, D. Negrea, D. Gambacurta, Phys. Lett. B 751, 348 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    M. Sambataro, N. Sandulescu, Phys. Rev. C 93, 054320 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    M. Sambataro, N. Sandulescu, C.W. Johnson, Phys. Lett. B 740, 137 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J. Dobes, S. Pittel, Phys. Rev. C 57, 688 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    A.L. Goodman, Phys. Rev. C 60, 014311 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    A. Gezerlis, G.F. Bertsch, Y.L. Luo, Phys. Rev. Lett. 106, 252502 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Hasegawa, S. Tazaki, R. Okamoto, Nucl. Phys. A 592, 45 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    M. Hasegawa, S. Tazaki, Nucl. Phys. A 633, 266 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    M. Sambataro, N. Sandulescu, Phys. Rev. Lett. 115, 112501 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    M. Sambataro, N. Sandulescu, J. Phys. G: Nucl. Part. Phys. 40, 055107 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    B.A. Brown, W.A. Richter, Phys. Rev. C 74, 034315 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    A. Tohsaki, H. Horiuchi, P. Schuck, G. Ropke, Phys. Rev. Lett. 87, 192501 (2001)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Istituto Nazionale di Fisica Nucleare - Sezione di CataniaCataniaItaly
  2. 2.National Institute of Physics and Nuclear EngineeringBucharest-MagureleRomania

Personalised recommendations