Advertisement

Theoretical study of intermediate-mass fragments in proton-nucleus reactions at 200 MeV

  • Mohammad S. SabraEmail author
Regular Article - Theoretical Physics
  • 73 Downloads

Abstract.

We have analyzed energy spectra, angular distributions, and mass and charge distributions of intermediate-mass fragments (IMFs) from the interaction of 27Al, 59Co, and 197Au with 200 MeV protons. Calculations within the modified statistical model with final-state interaction were performed using SAPTON code. Within the experimental uncertainty and constraint, SAPTON shows good agreement with the data, and suggests that the IMFs are produced after the intra-nuclear cascade stage, and during the surface coalescence, as well as the evaporation/fission stages.

References

  1. 1.
    J.W. Wilson, Transport Methods and Interactions for Space Radiations, NASA Reference Publication 1257, December 1991, pp. 11--12Google Scholar
  2. 2.
    M.S. Sabra, Z.F. Shehadeh, F.B. Malik, Eur. Phys. J. A 27, 167 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    M.S. Sabra, M.A. Clemens, R.A. Weller, M.H. Mendenhall, A.F. Barghouty, F.B. Malik, Nucl. Instrum. Methods B 269, 2463 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    M.S. Sabra, PhD Thesis, Southern Illinois University (2009)Google Scholar
  5. 5.
    V.F. Weisskopf, D.H. Ewing, Phys. Rev. C 57, 472 (1940)ADSCrossRefGoogle Scholar
  6. 6.
    E. Gadioli, L. Zetta, Phys. Rev. C 167, 1016 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Cook, H. Ferguson, A.R.Del. Musgrove, Aust. J. Phys. 20, 477 (1967)ADSCrossRefGoogle Scholar
  9. 9.
    T. Ericson, Adv. Phys. 9, 425 (1960)ADSCrossRefGoogle Scholar
  10. 10.
    H. Machner et al., Phys. Rev. C 73, 044606 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    S. Furihata, Nucl. Instrum. Methods B 171, 251 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    I. Dostrovsky, Z. Fraenkel, G. Friedlander, Phys. Rev. 116, 683 (1959)ADSCrossRefGoogle Scholar
  13. 13.
    Nuclear Data Services, available on-line at the following link: https://www-nds.iaea.org/exfor/exfor.htm
  14. 14.
    P.G. Roos, N.S. Chant, A.A. Cowley, D.A. Goldberg, H.D. Holmgre, R. Woody, III., Phys Rev. C 15, 1650 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Cowley, P.G. Roos, N.S. Chant, R. Woody, III., H.D. Holmgren, D.A. Goldberg, Phys. Rev. C 15, 1650 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    M. Lefort, J.P. Cohen, H. Dubost, X. Tarrago, Phys. Rev. 139, B1500 (1965)ADSCrossRefGoogle Scholar
  17. 17.
    R.A. Stryk, J.M. Blair, Phys. Rev. 169, 767 (1968)ADSCrossRefGoogle Scholar
  18. 18.
    G.R. Kelly et al., Phys. Rev. C 63, 024601 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    H. Iwamoto, Y. Uozumi, AIP Conf. Proc. 1005, 140 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    R.E.L. Green, R.G. Korteling, Phys. Rev. C 22, 1594 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    J.X. Cheng, X. Jiang, S.W. Yan, D.H. Zhang, J. Phys. G: Nucl. Part. Phys. 39, 055104 (2012)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.USRA Space Science DepartmentNASA Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations