Advertisement

Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution

  • Hai-Ling Lao
  • Fu-Hu LiuEmail author
  • Roy A. Lacey
Regular Article - Theoretical Physics

Abstract.

We analyze the transverse-momentum (pT) spectra of identified particles (\(\pi^{\pm}\), \(K^{\pm}\), p, and \(\bar{p}\)) produced in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions over a \(\sqrt{s_{NN}}\) (center-of-mass energy per nucleon pair) range from 14.5 GeV (one of the Relativistic Heavy Ion Collider (RHIC) energies) to 2.76 TeV (one of the Large Hadron Collider (LHC) energies). For the spectra with a narrow pT range, an improved Tsallis distribution which is in fact the Tsallis distribution with radial flow is used. For the spectra with a wide pT range, a superposition of the improved Tsallis distribution and an inverse power law is used. Both the extracted kinetic freeze-out temperature (T0) and radial flow velocity (\(\beta_{T}\)) increase with the increase of \(\sqrt{s_{NN}}\), which indicates a higher excitation and larger expansion of the interesting system at the LHC. Both the values of T0 and \(\beta_{T}\) in central collisions are slightly larger than those in peripheral collisions, and they are independent of isospin and slightly dependent on mass.

References

  1. 1.
    J.L. Synge, The Relativistic Gas (North-Holland, Amsterdam, The Netherlands, 1957)Google Scholar
  2. 2.
    P.Z. Ning, L. Li, D.F. Min, Foundation of Nuclear Physics: Nucleons and Nuclei (Higher Education Press, Beijing, China, 2003)Google Scholar
  3. 3.
    C.D. Dermer, Astrophys. J. 280, 328 (1984)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    T.S. Biró, G. Purcsel, K. Ürmössy, Eur. Phys. J. A 40, 325 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    T.S. Biró, Eur. Phys. J. A 40, 255 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    W.M. Alberico, A. Lavagno, Eur. Phys. J. A 40, 313 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    G. Wilk, Z. Włodarczyk, Eur. Phys. J. A 40, 299 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    H. Zheng, L.L. Zhu, Adv. High Energy Phys. 2016, 9632126 (2016)CrossRefGoogle Scholar
  11. 11.
    E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 024917 (2015)ADSGoogle Scholar
  13. 13.
    T. Bhattacharyya, J. Cleymans, A. Khuntia, P. Pareek, R. Sahoo, Eur. Phys. J. A 52, 30 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    D. Thakur, S. Tripathy, P. Garg, R. Sahoo, J. Cleymans, Adv. High Energy Phys. 2016, 4149352 (2016)CrossRefGoogle Scholar
  15. 15.
    H.-R. Wei, F.-H. Liu, R.A. Lacey, Eur. Phys. J. A 52, 102 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    H.-L. Lao, H.-R. Wei, F.-H. Liu, R.A. Lacey, Eur. Phys. J. A 52, 203 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    H.-R. Wei, F.-H. Liu, R.A. Lacey, J. Phys. G 43, 125102 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S. Takeuchi, K. Murase, T. Hirano, P. Huovinen, Y. Nara, Phys. Rev. C 92, 044907 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    H. Heiselberg, A.M. Levy, Phys. Rev. C 59, 2716 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 69, 034909 (2004)CrossRefGoogle Scholar
  21. 21.
    STAR Collaboration (V. Bairathi), Nucl. Phys. A 956, 292 (2015)Google Scholar
  22. 22.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)CrossRefGoogle Scholar
  23. 23.
    PHENIX Collaboration (K. Adcox et al.), Phys. Rev. C 69, 024904 (2004)CrossRefGoogle Scholar
  24. 24.
    PHENIX Collaboration (K. Adcox et al.), Phys. Rev. Lett. 88, 242301 (2002)CrossRefGoogle Scholar
  25. 25.
    PHENIX Collaboration (T. Chujo), Nucl. Phys. A 715, 151 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    PHENIX Collaboration (T. Chujo), Nucl. Phys. A 721, 273 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    A. Kiyomichi, Study of identified hadron spectra and yields at mid-rapidity in $\sqrt{s_{NN}}=200$ GeV Au+Au Collisions, PhD Thesis, University of Tsukuba, Japan, 2005Google Scholar
  29. 29.
    M. Vasileiou, EPJ Web of Conferences 126, 04052 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Odorico, Phys. Lett. B 118, 151 (1982)ADSCrossRefGoogle Scholar
  31. 31.
    UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 118, 167 (1982)CrossRefGoogle Scholar
  32. 32.
    M. Biyajima, T. Mizoguchi, N. Suzuki, arXiv:1604.01264 (2016)
  33. 33.
    Z.B. Tang, Y.C. Xu, L.J. Ruan, G. van Buren, F.Q. Wang, Z.B. Xu, Phys. Rev. C 79, 051901(R) (2009)ADSCrossRefGoogle Scholar
  34. 34.
    X.N. Wang, M. Gyulassy, Phys. Rev. Lett. 86, 3496 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    A.N. Mishra, R. Sahoo, P. Sahoo, P. Pareek, N.K. Behera, B.K. Nandi, Eur. Phys. J. A 52, 319 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    L. Zhou, G.S.F. Stephans, Phys. Rev. C 90, 014902 (2014)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsShanxi UniversityShanxiChina
  2. 2.Departments of Chemistry & PhysicsStony Brook UniversityStony BrookUSA

Personalised recommendations