Skip to main content

Advertisement

Log in

Hot magnetized nuclear matter: Thermodynamic and saturation properties

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We have used a realistic nuclear potential, \(AV_{18}\), and a many-body technique, the lowest-order constraint variational (LOCV) approach, to calculate the properties of hot magnetized nuclear matter. By investigating the free energy, spin polarization parameter, and symmetry energy, we have studied the temperature and magnetic field dependence of the saturation properties of magnetized nuclear matter. In addition, we have calculated the equation of state of magnetized nuclear matter at different temperatures and magnetic fields. It was found that the flashing temperature of nuclear matter decreases by increasing the magnetic field. In addition, we have studied the effect of the magnetic field on liquid gas phase transition of nuclear matter. The liquid gas coexistence curves, the order parameter of the liquid gas phase transition, and the properties of critical point at different magnetic fields have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.F. Chapline, M.H. Johnson, E. Teller, M.S. Weiss, Phys. Rev. D 8, 4302 (1973)

    Article  ADS  Google Scholar 

  2. M. Camenzind, Compact Objects in Astrophysics: White Dwarfs, Neutron Stars and Black Holes (Springer-Verlag, Berlin, Heidelberg, 2007)

  3. Y.F. Yuan, J.L. Zhang, Astron. Astrophys. 335, 969 (1998)

    ADS  Google Scholar 

  4. M. Barranco, J.-R. Buchler, Phys. Rev. C 24, 1191 (1981)

    Article  ADS  Google Scholar 

  5. C. Das, R.K. Tripathi, R. Sahu, Phys. Rev. C 45, 2217 (1992)

    Article  ADS  Google Scholar 

  6. H. Kanzawa, K. Oyamatsu, K. Sumiyoshi, M. Takano, Nucl. Phys. A 791, 232 (2007)

    Article  ADS  Google Scholar 

  7. N.M. Ghulam, H.B. Ghassib, M.K. Al-Sugheir, Phys. Rev. C 75, 064317 (2007)

    Article  ADS  Google Scholar 

  8. A. Mukherjee, Phys. Rev. C 79, 045811 (2009)

    Article  ADS  Google Scholar 

  9. O.N. Ghodsi, R. Gharaei, Phys. Rev. C 84, 024612 (2011)

    Article  ADS  Google Scholar 

  10. H. Pais, A. Sulaksono, B.K. Agrawal, C. Providência, Phys. Rev. C 93, 045802 (2016)

    Article  ADS  Google Scholar 

  11. C. Mondal, B.K. Agrawal, J.N. De, S.K. Samaddar, Phys. Rev. C 93, 044328 (2016)

    Article  ADS  Google Scholar 

  12. N. Alam, B.K. Agrawal, M. Fortin, H. Pais, C. Providência, Ad.R. Raduta, A. Sulaksono, Phys. Rev. C 94, 052801 (2016)

    Article  ADS  Google Scholar 

  13. Ngo Hai Tan, Doan Thi Loan, Dao T. Khoa, Jerome Margueron, Phys. Rev. C 93, 035806 (2016)

    Article  ADS  Google Scholar 

  14. A.N. Antonov, D.N. Kadrev, M.K. Gaidarov, P. Sarriguren, E. Moya de Guerra, accepted for publication in Physical Review C, arXiv:1702.00576

  15. J.B. Natowitz et al., Phys. Rev. Lett. 89, 212701 (2002)

    Article  ADS  Google Scholar 

  16. J.B. Elliott, P.T. Lake, L.G. Moretto, L. Phair, Phys. Rev. C 87, 054622 (2013)

    Article  ADS  Google Scholar 

  17. B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981)

    Article  ADS  Google Scholar 

  18. M. Malheiro, A. Delfino, C.T. Coelho, Phys. Rev. C 58, 426 (1998)

    Article  ADS  Google Scholar 

  19. M. Baldo, L.S. Ferreira, Phys. Rev. C 59, 682 (1999)

    Article  ADS  Google Scholar 

  20. M. Abd-Alla, S.A. Hager, Phys. Rev. C 61, 044313 (2000)

    Article  ADS  Google Scholar 

  21. W. Zuo, Z.H. Li, A. Li, G.C. Lu, Phys. Rev. C 69, 064001 (2003)

    Article  ADS  Google Scholar 

  22. W. Zuo, Z.H. Li, A. Li, U. Lombardo, Nucl. Phys. A 745, 34 (2004)

    Article  ADS  Google Scholar 

  23. A. Rios, Nucl. Phys. A 845, 58 (2010)

    Article  ADS  Google Scholar 

  24. B.K. Sharma, S. Pal, Phys. Rev. C 81, 064304 (2010)

    Article  ADS  Google Scholar 

  25. G.H. Zhang, W.Z. Jiang, Phys. Lett. B 720, 148 (2013)

    Article  ADS  Google Scholar 

  26. A. Rios, A. Polls, A. Ramos, H. Müther, Phys. Rev. C 78, 044314 (2008)

    Article  ADS  Google Scholar 

  27. C. Wellenhofer, J.W. Holt, N. Kaiser, W. Weise, Phys. Rev. C 89, 064009 (2014)

    Article  ADS  Google Scholar 

  28. A. Rios, X.R. Maza, J. Phys. G: Nucl. Part. Phys. 42, 034005 (2015)

    Article  ADS  Google Scholar 

  29. S. Chakrabarty, D. Bandyopadhyay, S. Pal, Phys. Rev. Lett. 78, 2898 (1997)

    Article  ADS  Google Scholar 

  30. A. Rabhi, C. Providencia, J. Da Providencia, Phys. Rev. C 79, 015804 (2009)

    Article  ADS  Google Scholar 

  31. J.P.W. Diener, F.G. Scholtz, Phys. Rev. C 87, 065805 (2013)

    Article  ADS  Google Scholar 

  32. J. Dong, U. Lombardo, W. Zuo, H. Zhang, Nucl. Phys. A 898, 32 (2013)

    Article  ADS  Google Scholar 

  33. A. Haber, F. Preis, A. Schmitt, Phys. Rev. D 90, 125036 (2014)

    Article  ADS  Google Scholar 

  34. R. Aguirre, E. Bauer, J. Phys. G: Nucl. Part. Phys. 42, 105101 (2015)

    Article  Google Scholar 

  35. J.C. Owen, R.F. Bishop, J.M. Irvine, Ann. Phys. (NY) 102, 170 (1976)

    Article  ADS  Google Scholar 

  36. J.C. Owen, R.F. Bishop, J.M. Irvine, Nucl. Phys. A 274, 108 (1976)

    Article  ADS  Google Scholar 

  37. J.C. Owen, R.F. Bishop, J.M. Irvine, Nucl. Phys. A 277, 45 (1977)

    Article  ADS  Google Scholar 

  38. M. Modarres, J. Phys. G: Nucl. Phys. 19, 1349 (1993)

    Article  ADS  Google Scholar 

  39. M. Modarres, J. Phys. G: Nucl. Phys. 21, 351 (1995)

    Article  ADS  Google Scholar 

  40. M. Modarres, J. Phys. G: Nucl. Phys. 23, 923 (1997)

    Article  ADS  Google Scholar 

  41. H.R. Moshfegh, M. Modarres, J. Phys. G: Nucl. Phys. 24, 821 (1998)

    Article  ADS  Google Scholar 

  42. E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969)

  43. G.H. Bordbar, M. Modarres, J. Phys. G: Nucl. Phys. 23, 1631 (1997)

    Article  ADS  Google Scholar 

  44. G.H. Bordbar, M. Bigdeli, Phys. Rev. C 75, 045804 (2007)

    Article  ADS  Google Scholar 

  45. G.H. Bordbar, M. Bigdeli, Phys. Rev. C 76, 035803 (2007)

    Article  ADS  Google Scholar 

  46. G.H. Bordbar, M. Bigdeli, Phys. Rev. C 77, 015805 (2008)

    Article  ADS  Google Scholar 

  47. G.H. Bordbar, M. Bigdeli, Phys. Rev. C 78, 054315 (2008)

    Article  ADS  Google Scholar 

  48. M. Bigdeli, G.H. Bordbar, Z. Rezaei, Phys. Rev. C 80, 034310 (2009)

    Article  ADS  Google Scholar 

  49. Z. Rezaei, M. Bigdeli, G.H. Bordbar, Int. J. Mod. Phys. E 24, 1550075 (2015)

    Article  ADS  Google Scholar 

  50. Z. Rezaei, G.H. Bordbar, Eur. Phys. J. A 52, 132 (2016)

    Article  ADS  Google Scholar 

  51. G.H. Bordbar, Z. Rezaei, Rom. J. Phys. 61, 413 (2016)

    Google Scholar 

  52. A. Rios, A. Polls, I. Vidana, Phys. Rev. C 71, 055802 (2005)

    Article  ADS  Google Scholar 

  53. D. Lopez-Val, A. Rios, A. Polls, I. Vidana, Phys. Rev. C 74, 068801 (2006)

    Article  ADS  Google Scholar 

  54. R.K. Pathria, P.D. Beale, Statistical Mechanics (Pergamon Press, 2011)

  55. J.W. Clark, Prog. Part. Nucl. Phys. 2, 89 (1979)

    Article  ADS  Google Scholar 

  56. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  57. G.H. Bordbar, M. Modarres, Phys. Rev. C 57, 714 (1998)

    Article  ADS  Google Scholar 

  58. M. Modarres, G.H. Bordbar, Phys. Rev. C 58, 2781 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Rezaei.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, Z., Bordbar, G.H. Hot magnetized nuclear matter: Thermodynamic and saturation properties. Eur. Phys. J. A 53, 43 (2017). https://doi.org/10.1140/epja/i2017-12236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12236-3

Navigation