Advertisement

Hot magnetized nuclear matter: Thermodynamic and saturation properties

  • Z. RezaeiEmail author
  • G. H. Bordbar
Regular Article - Theoretical Physics

Abstract.

We have used a realistic nuclear potential, \(AV_{18}\), and a many-body technique, the lowest-order constraint variational (LOCV) approach, to calculate the properties of hot magnetized nuclear matter. By investigating the free energy, spin polarization parameter, and symmetry energy, we have studied the temperature and magnetic field dependence of the saturation properties of magnetized nuclear matter. In addition, we have calculated the equation of state of magnetized nuclear matter at different temperatures and magnetic fields. It was found that the flashing temperature of nuclear matter decreases by increasing the magnetic field. In addition, we have studied the effect of the magnetic field on liquid gas phase transition of nuclear matter. The liquid gas coexistence curves, the order parameter of the liquid gas phase transition, and the properties of critical point at different magnetic fields have been calculated.

References

  1. 1.
    G.F. Chapline, M.H. Johnson, E. Teller, M.S. Weiss, Phys. Rev. D 8, 4302 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    M. Camenzind, Compact Objects in Astrophysics: White Dwarfs, Neutron Stars and Black Holes (Springer-Verlag, Berlin, Heidelberg, 2007)Google Scholar
  3. 3.
    Y.F. Yuan, J.L. Zhang, Astron. Astrophys. 335, 969 (1998)ADSGoogle Scholar
  4. 4.
    M. Barranco, J.-R. Buchler, Phys. Rev. C 24, 1191 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    C. Das, R.K. Tripathi, R. Sahu, Phys. Rev. C 45, 2217 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    H. Kanzawa, K. Oyamatsu, K. Sumiyoshi, M. Takano, Nucl. Phys. A 791, 232 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    N.M. Ghulam, H.B. Ghassib, M.K. Al-Sugheir, Phys. Rev. C 75, 064317 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A. Mukherjee, Phys. Rev. C 79, 045811 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    O.N. Ghodsi, R. Gharaei, Phys. Rev. C 84, 024612 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    H. Pais, A. Sulaksono, B.K. Agrawal, C. Providência, Phys. Rev. C 93, 045802 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    C. Mondal, B.K. Agrawal, J.N. De, S.K. Samaddar, Phys. Rev. C 93, 044328 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    N. Alam, B.K. Agrawal, M. Fortin, H. Pais, C. Providência, Ad.R. Raduta, A. Sulaksono, Phys. Rev. C 94, 052801 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Ngo Hai Tan, Doan Thi Loan, Dao T. Khoa, Jerome Margueron, Phys. Rev. C 93, 035806 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    A.N. Antonov, D.N. Kadrev, M.K. Gaidarov, P. Sarriguren, E. Moya de Guerra, accepted for publication in Physical Review C, arXiv:1702.00576
  15. 15.
    J.B. Natowitz et al., Phys. Rev. Lett. 89, 212701 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.B. Elliott, P.T. Lake, L.G. Moretto, L. Phair, Phys. Rev. C 87, 054622 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    M. Malheiro, A. Delfino, C.T. Coelho, Phys. Rev. C 58, 426 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M. Baldo, L.S. Ferreira, Phys. Rev. C 59, 682 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    M. Abd-Alla, S.A. Hager, Phys. Rev. C 61, 044313 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    W. Zuo, Z.H. Li, A. Li, G.C. Lu, Phys. Rev. C 69, 064001 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    W. Zuo, Z.H. Li, A. Li, U. Lombardo, Nucl. Phys. A 745, 34 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    A. Rios, Nucl. Phys. A 845, 58 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    B.K. Sharma, S. Pal, Phys. Rev. C 81, 064304 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    G.H. Zhang, W.Z. Jiang, Phys. Lett. B 720, 148 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    A. Rios, A. Polls, A. Ramos, H. Müther, Phys. Rev. C 78, 044314 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    C. Wellenhofer, J.W. Holt, N. Kaiser, W. Weise, Phys. Rev. C 89, 064009 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    A. Rios, X.R. Maza, J. Phys. G: Nucl. Part. Phys. 42, 034005 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    S. Chakrabarty, D. Bandyopadhyay, S. Pal, Phys. Rev. Lett. 78, 2898 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    A. Rabhi, C. Providencia, J. Da Providencia, Phys. Rev. C 79, 015804 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    J.P.W. Diener, F.G. Scholtz, Phys. Rev. C 87, 065805 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    J. Dong, U. Lombardo, W. Zuo, H. Zhang, Nucl. Phys. A 898, 32 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    A. Haber, F. Preis, A. Schmitt, Phys. Rev. D 90, 125036 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    R. Aguirre, E. Bauer, J. Phys. G: Nucl. Part. Phys. 42, 105101 (2015)CrossRefGoogle Scholar
  35. 35.
    J.C. Owen, R.F. Bishop, J.M. Irvine, Ann. Phys. (NY) 102, 170 (1976)ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Owen, R.F. Bishop, J.M. Irvine, Nucl. Phys. A 274, 108 (1976)ADSCrossRefGoogle Scholar
  37. 37.
    J.C. Owen, R.F. Bishop, J.M. Irvine, Nucl. Phys. A 277, 45 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    M. Modarres, J. Phys. G: Nucl. Phys. 19, 1349 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    M. Modarres, J. Phys. G: Nucl. Phys. 21, 351 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    M. Modarres, J. Phys. G: Nucl. Phys. 23, 923 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    H.R. Moshfegh, M. Modarres, J. Phys. G: Nucl. Phys. 24, 821 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969)Google Scholar
  43. 43.
    G.H. Bordbar, M. Modarres, J. Phys. G: Nucl. Phys. 23, 1631 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    G.H. Bordbar, M. Bigdeli, Phys. Rev. C 75, 045804 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    G.H. Bordbar, M. Bigdeli, Phys. Rev. C 76, 035803 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    G.H. Bordbar, M. Bigdeli, Phys. Rev. C 77, 015805 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    G.H. Bordbar, M. Bigdeli, Phys. Rev. C 78, 054315 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    M. Bigdeli, G.H. Bordbar, Z. Rezaei, Phys. Rev. C 80, 034310 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Z. Rezaei, M. Bigdeli, G.H. Bordbar, Int. J. Mod. Phys. E 24, 1550075 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Z. Rezaei, G.H. Bordbar, Eur. Phys. J. A 52, 132 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    G.H. Bordbar, Z. Rezaei, Rom. J. Phys. 61, 413 (2016)Google Scholar
  52. 52.
    A. Rios, A. Polls, I. Vidana, Phys. Rev. C 71, 055802 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    D. Lopez-Val, A. Rios, A. Polls, I. Vidana, Phys. Rev. C 74, 068801 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    R.K. Pathria, P.D. Beale, Statistical Mechanics (Pergamon Press, 2011)Google Scholar
  55. 55.
    J.W. Clark, Prog. Part. Nucl. Phys. 2, 89 (1979)ADSCrossRefGoogle Scholar
  56. 56.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)ADSCrossRefGoogle Scholar
  57. 57.
    G.H. Bordbar, M. Modarres, Phys. Rev. C 57, 714 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    M. Modarres, G.H. Bordbar, Phys. Rev. C 58, 2781 (1998)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Physics Department and Biruni Observatory, College of SciencesShiraz UniversityShirazIran
  2. 2.Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)-MaraghaMaraghaIran

Personalised recommendations