Thermal neutron capture cross-section and resonance integral measurements of 139La(n,\( \gamma\))140La and 140Ce(n,\( \gamma\))141Ce using a Am-Be neutron source

  • Priyada PanikkathEmail author
  • P. Mohanakrishnan
Regular Article - Experimental Physics


Thermal neutron capture cross-sections and resonance integrals of 139La(n,\( \gamma\))140La and 140Ce (n,\( \gamma\))141Ce are measured with respect to reference reactions 197Au(n,\( \gamma\))198Au and 55Mn(n,\( \gamma\))56Mn using the neutron activation technique. Measurements are carried out using neutrons from an Am-Be source located inside a concrete bunker. Two different methods are used for determining self-shielding factors of activation foils as well as for finding the epithermal neutron spectrum shape factor. For 139 La with reference to 197 Au and 55 Mn the measured thermal cross sections are \( 9.24 \pm 0.25\) b and \( 9.28 \pm 0.37\) b, respectively, while the measured resonance integrals are \( 12.18 \pm 0.67\) b and \( 11.81 \pm 0.94\) b, respectively. For 140 Ce with reference to 197 Au and 55 Mn the measured thermal cross sections are \( 0.44 \pm 0.01\) b and \( 0.44 \pm 0.02\) b, respectively, while the measured resonance integrals are \( 0.55 \pm 0.03\) b and \( 0.54 \pm 0.04\) b, respectively. The present measurements are compared with earlier measurements and evaluations. Presently estimated values confirm the established 139La(n,\( \gamma\))140La cross-sections. The presently measured thermal capture cross-section 140Ce(n,\( \gamma\))141Ce , though lower than the evaluated data, is having higher accuracy compared to previous measurements with large uncertainties. The resonance integral measured is higher (like most previous measurements) than most evaluations requiring a revision of the evaluated data.


  1. 1.
    M. Barbagallo, N. Colonna, S. Altstadt, J. Andrzejewski, L. Audouin, V. Bé, EPJ Web of Conferences 66, 10001 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Ganesan, Nucl. Data Sheets 123, 21 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    P. Panikkath, P. Mohanakrishnan, Eur. Phys. J. A 52, 276 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    L. Danu, P. Joshi, D. Biswas, S. Mukhopadhyay, A. Goswami, P. Prashanth, L. Kinage, R. Choudhury, B. Singh, Eur. Phys. J. A 48, 1 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohasawa et al., J. Nucl. Sci. Technol. 48, 1 (2011)CrossRefGoogle Scholar
  6. 6.
    N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva et al., Nucl. Data Sheets 120, 272 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    N. Van Do, P.D. Khue, K.T. Thanh, N.T. Hien, G. Kim, S. Yang, Y.S. Cho, T.Y. Song, Y.O. Lee, S.G. Shin et al., Nucl. Instrum. Methods Phys. Res. B 335, 1 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    F. Farina, P. Vermaercke, K. Smits, L. Sneyers, K. Strijckmans, J. Radioanal. Nucl. Chem. 296, 931 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Takiue, H. Ishikawa, Nucl. Instrum. Methods 148, 157 (1978)ADSCrossRefGoogle Scholar
  10. 10.
    W. Mannhart, Tech. Rep., Technische Univ. Muenchen, Garching (FR Germany), Physik-Department (1975)Google Scholar
  11. 11.
    G. Gleason, Radiochem. Radioanal. Lett. 23, 317 (1975)Google Scholar
  12. 12.
    H. O'Brien, J. Eldridge, R. Druschel, J. Halperin, J. Inorg. Nucl. Chem. 29, 584 (1967)CrossRefGoogle Scholar
  13. 13.
    W. Lyon, Nucl. Sci. Eng. 8, 378 (1960)Google Scholar
  14. 14.
    J. Cummins, Tech. Rep., United Kingdom Atomic Energy Authority. Research Group, Atomic Energy Research Establishment, Harwell, Berks, England (1957)Google Scholar
  15. 15.
    P. Benoist, L. Kowarski, F. Netter, J. Phys. Radium (Paris) 12, 584 (1951)CrossRefGoogle Scholar
  16. 16.
    H. Pomerance, Phys. Rev. 83, 641 (1951)ADSCrossRefGoogle Scholar
  17. 17.
    S. Harris, C.O. Muehlhause, G. Thomas, Phys. Rev. 79, 11 (1950)ADSCrossRefGoogle Scholar
  18. 18.
    L. Seren, H.N. Friedlander, S.H. Turkel, Phys. Rev. 72, 888 (1947)ADSCrossRefGoogle Scholar
  19. 19.
    R. Terlizzi, U. Abbondanno, G. Aerts, H. Alvarez, F. Alvarez-Velarde, S. Andriamonje, J. Andrzejewski, P. Assimakopoulos, L. Audouin, G. Badurek et al., Phys. Rev. C 75, 035807 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    R. Heft, A consistent set of nuclear-parameter values for absolute instrumental neutron activation analysis, in Proceedings of the American Nuclear Society Topical Conference on Computers in Activation Analysis and Gamma-Ray Spectroscopy, Mayaguez, Puerto Rico, 1978 (National Technical Information Service, U.S. Dept. of Commerce, 1979) p. 495Google Scholar
  21. 21.
    E. Steinnes, J. Inorg. Nucl. Chem. 37, 1591 (1975)ADSCrossRefGoogle Scholar
  22. 22.
    R. Van der Linden, F. De Corte, J. Hoste, J. Radioanal. Chem. 20, 695 (1974)CrossRefGoogle Scholar
  23. 23.
    A. Alian, H. Born, J. Kim, J. Radioanal. Nucl. Chem. 15, 535 (1973)CrossRefGoogle Scholar
  24. 24.
    E. Steinnes, J. Inorg. Nucl. Chem. 34, 2699 (1972)CrossRefGoogle Scholar
  25. 25.
    T. Ryves, J. Nucl. Energy 25, 129 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    E. Orvini, G. Gaggero, L. Lesca, A. Bresesti, M. Bresesti, J. Inorg. Nucl. Chem. 30, 1353 (1968)CrossRefGoogle Scholar
  27. 27.
    L. Breitenhuber, M. Pinter, Progress Report 68 (IAEA, 1968), report from misc. OECD Countries to EANDCGoogle Scholar
  28. 28.
    K.F. Alexander, Tech. Rep. 23 (1964) zentralinst. f. Kernforschung Rossendorf ReportsGoogle Scholar
  29. 29.
    M. Chadwick, M. Herman, P. Oblož, Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    A. Koning, E. Bauge, C. Dean, E. Dupont, U. Fischer, R. Forrest, R. Jacqmin, H. Leeb, M. Kellett, R. Mills et al., J. Korean Phys. Soc. 59, 1057 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Zabrodskaya, A. Ignatyuk, V. Koscheev, RUSFOND - Russian National Library of Evaluated Neutron Data, in VANT, Problems of Atomic Science and Technology - Series: Nuclear and Reactor Constants, issue no. 1-2 (2007) pp. 3--21Google Scholar
  32. 32.
    Z. Ge, Z. Zhao, H. Xia, Y. Zhuang, T. Liu, J. Zhang, H. Wu, J. Korean Phys. Soc. 59, 1052 (2011)CrossRefGoogle Scholar
  33. 33.
    J.C. Sublet, L. Packer, J. Kopecky, R. Forrest, A. Koning, D. Rochman, CCFE Report, CCFE R(10)05 (2010)Google Scholar
  34. 34.
    S.F. Mughabghab, Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. $Z = 1-100$ (Elsevier, 2006)Google Scholar
  35. 35.
    B. Pritychenko, S. Mughabghab, Nucl. Data Sheets 113, 3120 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    S. Torrel, K. Krane, Phys. Rev. C 86, 034340 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    J. Alstad, T. Jahnsen, A. Pappas, J. Inorg. Nucl. Chem. 29, 2155 (1967)CrossRefGoogle Scholar
  38. 38.
    P. Lantz, C. Baldock, L. Idom, Nucl. Sci. Eng. 20, 302 (1964)Google Scholar
  39. 39.
    H. Pomerance, Phys. Rev. 88, 412 (1952)ADSCrossRefGoogle Scholar
  40. 40.
    D. Hughes, D. Sherman, Phys. Rev. 78, 632 (1950)ADSCrossRefGoogle Scholar
  41. 41.
    S. Katcoff, J. Leary, K. Walsh, R. Elmer, S. Goldsmith, L. Hall, E. Newbury, J. Povelites, J. Waddell, J. Chem. Phys. 17, 421 (1949)ADSCrossRefGoogle Scholar
  42. 42.
    M. Karadag, H. Yücel, Nucl. Instrum. Methods Phys. Res. A 550, 626 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    W. McElroy, A computer-automated iterative method for neutron flux spectra determination by foil activation, Technical Report (U.S. Dept. of Defense, 1967)Google Scholar
  44. 44.
    IAEA, Reference neutron activation library, IAEA-TECDOC-1285 (International Atomic Energy Agenc, Vienna, 2002)Google Scholar
  45. 45.
    J.F. Briesmeister, MCNP --A general Monte Carlo code for neutron and photon transport (Los Alamos National Laboratory, 1986)Google Scholar
  46. 46.
    B. Marie-Martine, Valery P. Chechev, Nucl. Instrum. Methods Phys. Res. A 728, 157 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    M. Berger, J. Hubbell, S. Seltzer, J. Chang, J. Coursey, R. Sukumar, D. Zucker, K. Olsen, NIST Standard Reference Database 8 (NIST, 1990). Google Scholar
  48. 48.
    F. De Corte, A. Simonits, A. De Wispelaere, J. Radioanal. Nucl. Chem. 133, 131 (1989)CrossRefGoogle Scholar
  49. 49.
    F. De Corte, K. Sordo-El Hammami, L. Moens, A. Simonits, A. De Wispelaere, J. Hoste, J. Radioanal. Chem. 62, 209 (1981)CrossRefGoogle Scholar
  50. 50.
    H. Yücel, M. Karadag, Ann. Nucl. Energy 31, 681 (2004)CrossRefGoogle Scholar
  51. 51.
    R.B.M. Sogbadji, B.J.B. Nyarko, E.H.K. Akaho, R.G. Abrefah, World J. Nucl. Sci. Technol. 1, 50 (2011)CrossRefGoogle Scholar
  52. 52.
    M. Blaauw, Nucl. Instrum. Methods Phys. Res. A 356, 403 (1995)ADSCrossRefGoogle Scholar
  53. 53.
    E. Martinho, I. Gonç, Appl. Radiat. Isot. 58, 371 (2003)CrossRefGoogle Scholar
  54. 54.
    A. Trkov, G. Z, Nucl. Instrum. Methods Phys. Res. A 610, 553 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    D. Smith, N. Otuka, Nucl. Data Sheets 113, 3006 (2012)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Manipal Centre for Natural SciencesManipal UniversityKarnatakaIndia

Personalised recommendations