Advertisement

Scattering state solutions of the Duffin-Kemmer-Petiau equation with the Varshni potential model

  • O. J. OluwadareEmail author
  • K. J. Oyewumi
Regular Article - Theoretical Physics

Abstract.

The scattering state of the Duffin-Kemmer-Petiau equation with the Varshni potential was studied. The asymptotic wave function, the scattering phase shift and normalization constant were obtained for any J states by dealing with the centrifugal term using a suitable approximation. The analytical properties of the scattering amplitude and the bound state energy were obtained and discussed. Our numerical and graphical results indicate that the scattering phase shift depends largely on total angular momentum J , screening parameter \(\beta\) and potential strengths a and b.

References

  1. 1.
    G. Petiau, Acad. R. Belg. Cl. Sci. Mem. Collect. 8, 16 (1936) PhD Thesis, University of ParisGoogle Scholar
  2. 2.
    N. Kemmer, Proc. R. Soc. A 166, 127 (1938)ADSCrossRefGoogle Scholar
  3. 3.
    R.J. Duffin, Phys. Rev. 54, 1114 (1938)ADSCrossRefGoogle Scholar
  4. 4.
    N. Kemmer, Proc. R. Soc. A 173, 91 (1938)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Hassanabadi et al., Adv. High Energy Phys. 2012, 804652 (2012)MathSciNetGoogle Scholar
  6. 6.
    S. Zarrinkamar et al., Eur. Phys. J. Plus 128, 109 (2013)CrossRefGoogle Scholar
  7. 7.
    A.N. Ikot et al., Few Body Syst. 55, 211 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    A.N. Ikot et al., Z. Naturforsch. A 70, 185 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    R.E. Kozack et al., Phys. Rev. C 40, 2181 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    V. Gribov, Eur. Phys. J. C 10, 71 (1999)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions (Oxford University Press, Cambridge, 1965)Google Scholar
  12. 12.
    O.J. Oluwadare, K.E. Thylwe, K.J. Oyewumi, Commun. Theor. Phys. 65, 434 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    K.E. Thylwe, O.J. Oluwadare, K.J. Oyewumi, Commun. Theor. Phys. 66, 389 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    K.J. Oyewumi, O.J. Oluwadare, Eur. Phys. J. Plus 131, 295 (2016)CrossRefGoogle Scholar
  15. 15.
    K.J. Oyewumi, O.J. Oluwadare, Adv. High Energy Phys. 2017, 1634717 (2017)CrossRefGoogle Scholar
  16. 16.
    S.H. Dong, M. Lozada-Gassou, Phys. Lett. A 330, 168 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A.D. Alhaidari, J. Phys. A: Math. Gen. 38, 3409 (2005)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G.F. Wei, Z.Z. Zhen, S.H. Dong, Cent. Eur. J. Phys. 7, 175 (2009)Google Scholar
  19. 19.
    G.F. Wei, W.C Qiang, W.L. Chen, Cent. Eur. J. Phys. 8, 574 (2010)Google Scholar
  20. 20.
    Z. Molaee et al., Chin. Phys. B 22, 060306 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    C.A. Onate et al., Afr. Rev. Phys. 9, 0062 (2014)Google Scholar
  22. 22.
    L.P. de Oliveira, A.S. de Castro, Can. J. Phys. 90, 481 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    L.B. Castro, T.R. Cardoso, A.S. de Castro, Nucl. Phys. B Proc. Suppl. 199, 207 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    F. Yasuk, M. Karakoc, T. Boztosun, Phys. Scr. 78, 0031, 045010 (2008)CrossRefGoogle Scholar
  25. 25.
    M. Hamzavi, S.M. Ikhdair, Few Body Syst. 54, 1753 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    N. Salehi, H. Hassanabadi, Eur. Phys. J. A 51, 100 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    C.A. Onate, Afr. Rev. Phys. 9, 0033 (2014)Google Scholar
  28. 28.
    H. Hassanabadi et al., Phys. Rev. C. 84, 064003 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Hamzavi, S.M. Ikhdair, Few. Body Syst. 53, 461 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    I. Boztosun et al., J. Math. Phys. 47, 062301 (2006)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    H. Hassanabadi, Z. Molaee, A. Boumali, Found. Phys. 43, 225 (2013)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M.K. Bahar, F. Yasuk, Ann. Phys. 344, 105 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    H. Hassanabadi, Z. Molaee, A. Boumali, Chin. Phys. C. 37, 073104 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    H. Hassanabadi et al., Phys. Part. Nucl. Lett. 10, 699 (2013)CrossRefGoogle Scholar
  35. 35.
    H. Hassanabadi, M. Kamali, B.H. Yazarloo, Can. J. Phys. 92, 1 (2014)CrossRefGoogle Scholar
  36. 36.
    Y.P. Varshni, Rev. Mod. Phys. 31, 839 (1959)ADSCrossRefGoogle Scholar
  37. 37.
    T.C. Lim, J. Serb. Chem. Soc. 74, 1423 (2009)CrossRefGoogle Scholar
  38. 38.
    A. Arda, R. Sever, Z. Naturforsch. A 69, 163 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    H. Hassanabadi, S. Zarrinkamar, H. Rahimov, Commun. Theor. Phys. 56, 423 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    W.A. Yahya et al., Int. J. Mod. Phys. E 22, 1350062 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Department of Commerce, National Bureau of Standards, New York, 1965)Google Scholar
  42. 42.
    L.D Landau, E.M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, 3rd edition (Pergamon, New York, 1977)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsFederal University Oye-EkitiOye-EkitiNigeria
  2. 2.Department of PhysicsFederal University of TechnologyMinnaNigeria

Personalised recommendations