Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Compton imaging with a highly-segmented, position-sensitive HPGe detector

  • 219 Accesses

  • 2 Citations

Abstract.

A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of \(\gamma\) radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered \(\gamma\)-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole \( 4\pi\) solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between \( 13.8^{\circ}\) and \( 19.1^{\circ}\), depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of \( 4.6^{\circ}\) was determined for the same \(\gamma\)-ray energy.

This is a preview of subscription content, log in to check access.

References

  1. 1

    P.F. Bloser, R. Andritschke, G. Kanbach, V. Schönfelder, F. Schopper, A. Zoglauer, New Astron. Rev. 46, 611 (2002) (Proceedings of the International Workshop Astronomy with radioactivities III

  2. 2

    G.W. Phillips, Nucl. Instrum. Methods Phys. Res. B 99, 674 (1995)

  3. 3

    W. Lee, T. Lee, Nucl. Instrum. Methods Phys. Res. A 624, 118 (2010)

  4. 4

    F. Recchia, D. Bazzacco, E. Farnea, R. Venturelli, S. Aydin, G. Suliman, C.A. Ur, Nucl. Instrum. Methods Phys. Res. A 604, 60 (2009)

  5. 5

    K. Vetter, Annu. Rev. Nucl. Part. Sci. 57, 363 (2007)

  6. 6

    K. Vetter, M. Burks, L. Mihailescu, Nucl. Instrum. Methods Phys. Res. A 525, 322 (2004) (Proceedings of the International Conference on Imaging Techniques in Subatomic Physics, Astrophysics, Medicine, Biology and Industry

  7. 7

    T. Niedermayr, K. Vetter, L. Mihailescu, G.J. Schmid, D. Beckedahl, J. Blair, J. Kammeraad, Nucl. Instrum. Methods Phys. Res. A 553, 501 (2005)

  8. 8

    H. Tan, User's Manual - Digital Gamma Finder (DGF) PIXIE-16, XIA LLC, 31057 Glenstar Rd., Hayward, CA 94544 USA, 1.40 edition, October 2009

  9. 9

    H. Tan, Setup Guide for the TU-München Pixie-16 Digital Data Acquisition (DAQ) System for Instrumenting a Compton Camera, XIA LLC, 31057 Glenstar Rd., Hayward, CA 94544 USA, 1.1 edition, February 2011

  10. 10

    B. Weiler, Development of a Compton camera using highly segmented semiconductor detectors, Diplomarbeit, Technische Universität München, Germany, January 2011

  11. 11

    J.C. Santiard, W. Beusch, S. Buytaert, C.C. Enz, E. Heihne, P. Jarron, F. Krummenacher, K. Marent, F. Piuz, Gasplex a low-noise analogue signal processor for read out of gaseous detectors, CERN-ECP-94-17 (1994)

  12. 12

    S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)

  13. 13

    A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, J. Eberth, D. Lersch, G. Pascovici, P. Reiter, H.-G. Thomas, Nucl. Instrum. Methods Phys. Res. A 618, 223 (2010)

  14. 14

    B. Bruyneel, B. Birkenbach, P. Reiter, Eur. Phys. J. A 52, 70 (2016)

  15. 15

    M. Schlarb, R. Gernhäuser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 132 (2011)

  16. 16

    M. Schlarb, R. Gernhäuser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 131 (2011)

  17. 17

    G. Cavalleri, E. Gatti, G. Fabri, V. Svelto, Nucl. Instrum. Methods 92, 137 (1971)

  18. 18

    B. Bruyneel, P. Reiter, A. Wiens, J. Eberth, H. Hess, G. Pascovici, N. Warr, D. Weisshaar, Nucl. Instrum. Methods Phys. Res. A 599, 196 (2009)

  19. 19

    P.-A. Söderström, F. Recchia, J. Nyberg et al., Nucl. Instrum. Methods Phys. Res. A 638, 96 (2011)

  20. 20

    S.J. Wilderman, W.L. Rogers, G.F. Knoll, J.C. Engdahl, IEEE Trans. Nucl. Sci. 45, 957 (1998)

  21. 21

    A. Van Oosterom, J. Strackee, IEEE Trans. Biomed. Eng. 30, 125 (1983)

  22. 22

    R. Hirsch, Master's Thesis, Universität zu Köln, Germany, in preparation (2017)

  23. 23

    S. Moon, B.Q. Arns, A.J. Boston, H.C. Boston, J.R. Cresswell, T. Davinson, A. Gadea, L.J. Harkness, D.S. Judson, I. Lazarus, P.J. Nolan, R.D. Page, A.H. Prieto, J. Simpson, J. Instrum. 6, C12048 (2011)

Download references

Author information

Correspondence to P. Reiter.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steinbach, T., Hirsch, R., Reiter, P. et al. Compton imaging with a highly-segmented, position-sensitive HPGe detector. Eur. Phys. J. A 53, 23 (2017). https://doi.org/10.1140/epja/i2017-12214-9

Download citation