Advertisement

Stellar energy loss rates in the pair-annihilation process beyond the standard model

  • M. A. Hernández-Ruíz
  • A. Gutiérrez-RodríguezEmail author
  • A. González-Sánchez
Regular Article - Theoretical Physics

Abstract.

We calculate the stellar energy loss due to neutrino-pair production in \(e^{+}e^{-}\) annihilation in the context of a 331 model, a left-right symmetric model and a simplest little Higgs model in a way that can be used in supernova calculations. We also present some simple estimates which show that such process can act as an efficient energy loss mechanism in the shocked supernova core. We find that the stellar energy loss is almost independent of the parameters of the models in the allowed range for these parameters. This work complements other studies on the stellar energy loss rate in \(e^{+}e^{-}\) annihilation.

References

  1. 1.
    G. Gamow, Rev. Mod. Phys. 21, 367 (1949)ADSCrossRefGoogle Scholar
  2. 2.
    G. Gamow, Phys. Rev. Lett. 19, 759 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968)ADSGoogle Scholar
  4. 4.
    Rabindra N. Mohapatra, Palash B. Pal, Massive Neutrinos in Physics and Astrophysics, World Scientific Lecture Notes in Physics, Vol. 72 (World Scientific, 2004)Google Scholar
  5. 5.
    Gilles Beaudet, Vahé Petrosian, E.E. Salpeter, Astrophys. J. 150, 979 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Dicus, Phys. Rev. D 6, 941 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    Duane A. Dicus, Edward W. Kolb, Phys. Rev. D 15, 977 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    S. Alam, J.D. Anand, S.N. Biswas, Ashok Goyal, Phys. Rev. D 40, 2712 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    Duane A. Dicus et al., Astrophys. J. 210, 481 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    Stephen W. Bruenn, Astrophys. J. Suppl. Ser. 58, 771 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    S.L. Glashow, Nucl. Phys. 22, 579 (1961)CrossRefGoogle Scholar
  12. 12.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)ADSCrossRefGoogle Scholar
  13. 13.
    A. Salam, in Elementary Particle Theory: Relativistic Groups and Analyticity (Nobel Symposium No. 8), edited by N. Svartholm (Almqvist and Wiksell, Stockholm, 1968) p. 367Google Scholar
  14. 14.
    J.C. Pati, A. Salam, Phys. Rev. D 10, 275 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 566 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    R.N. Mohapatra, Prog. Part. Nucl. Phys. 26, 1 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    G. Senjanovic, R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    G. Senjanovic, Nucl. Phys. B 153, 334 (1979)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    R.N. Mohapatra, in Quarks, Leptons and Beyond, Proceedings of the NATO Advanced Study Institute, Munich, Germany, 1983, edited by H. Fritzsch, NATO ASI Ser. B: Physics, Vol. 122 (Plenum, New York, 1985) p. 219Google Scholar
  20. 20.
    P.H. Frampton, Phys. Rev. Lett. 69, 2889 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    F. Pisano, V. Pleitez, Phys. Rev. D 46, 410 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    A.G. Dias, V. Pleitez, Phys. Rev. D 69, 077702 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    A.G. Dias, C.A. de S. Pires, P.S.R. da Silva, Phys. Rev. D 68, 115009 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    R.A. Diaz, R. Martinez, F. Ochoa, Phys. Rev. D 72, 035018 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    A.G. Dias, R. Martinez, V. Pleitez, Eur. Phys. J. C 39, 101 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    A.G. Dias, Phys. Rev. D 71, 015009 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    A.G. Dias, A. Doff, C.A. de S. Pires, P.S. Rodrigues da Silva, Phys. Rev. D 72, 035006 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    A.G. Dias, C.A. de S. Pires, P.S. Rodrigues da Silva, Phys. Lett. B 628, 85 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    A.G. Dias, C.A. de S. Pires, P.S.R. da Silva, Phys. Rev. D 84, 053011 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    F. Ochoa, R. Martinez, Phys. Rev. D 72, 035010 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    D. Cogollo et al., Mod. Phys. Lett. A 25, 275 (2009)Google Scholar
  32. 32.
    Cao Qing-Hong, Zhang Dong-Ming, arXiv:1611.09337 [hep-ph].
  33. 33.
    R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    A. Aad, B. Abbott, J. Abdallah et al., Phys. Rev. D 90, 052005 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    A. Aad, T. Abajyan, B. Abbott et al., JHEP 2012, 138 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    S. Chatrchyan, V. Khachatryan, A.M. Sirunyan et al., Phys. Lett. B 720, 63 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    American Linear Collider Working Group (T. Abe), arXiv:hep-ex/0106057
  38. 38.
    ILC Collaboration (G. Aarons), arXiv:0709.1893 [hep-ph]
  39. 39.
    ILC Collaboration (J. Brau), arXiv:0712.1950 [physics.acc-ph]
  40. 40.
    H. Baer, T. Barklow, K. Fujii, The International Linear Collider, Technical Desing Report - Vol. 2: Physics, arXiv:1306.6352 [hep-ph]
  41. 41.
    D.M. Asner, ILC Higgs White Paper, arXiv:1310.0763 [hep-ph]
  42. 42.
    P.M. Zerwas (Editor), Proceedings of the Workshop $e^+e^-$ Collisions at 500 GeV: The Physics Potential, Munich-Annecy-Hamburg, Reports DESY 92-123A, BGoogle Scholar
  43. 43.
    CLIC Physics Working Group Collaboration (E. Accomando), arXiv:hep-ph/0412251, CERN-2004-005
  44. 44.
    H. Abramowicz, The CLIC Detector and Physics Study, arXiv:1307.5288 [hep-ex]
  45. 45.
    D. Dannheim, P. Lebrun, L. Linssen, arXiv:1208.1402 [hep-ex]
  46. 46.
    R.W. Robinett, Phys. Rev. D 26, 2388 (1982)ADSCrossRefGoogle Scholar
  47. 47.
    M. Green, J. Schwarz, Phys. Lett. B 149, 117 (1984)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    G. Senjanovic, Nucl. Phys. B 153, 334 (1979)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    G. Senjanovic, R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975)ADSCrossRefGoogle Scholar
  50. 50.
    U. Baur et al., Phys. Rev. D 35, 297 (1987)ADSCrossRefGoogle Scholar
  51. 51.
    N. Arkani-Hamed et al., Phys. Lett. B 513, 232 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    N. Arkani-Hamed et al., JHEP 08, 021 (2002)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    D.E. Kaplan, M. Schmaltz, JHEP 10, 039 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    M. Schmaltz, JHEP 08, 056 (2004)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Alex G. Dias et al., Phys. Rev. D 77, 055001 (2008) and references thereinADSCrossRefGoogle Scholar
  56. 56.
    C. Csaki et al., Phys. Rev. D 67, 115002 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    J.L. Hewett, F.J. Petriello, T.G. Rizzo, JHEP 10, 062 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    M.C. Chen, S. Dawson, Phys. Rev. D 70, 015003 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    M.C. Chen et al., Mod. Phys. Lett. A 21, 621 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    H.C. Cheng, I. Low, JHEP 09, 051 (2003)ADSCrossRefGoogle Scholar
  61. 61.
    H.C. Cheng, I. Low, JHEP 08, 061 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    I. Low, JHEP 10, 067 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    T. Han, H.E. Logan, B. McElrath, L.T. Wang, Phys. Rev. D 67, 095004 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    I. Low, W. Skiba, D. Smith, Phys. Rev. D 66, 072001 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    J. Polak, M. Zralek, Phys. Rev. D 46, 3871 (1992)ADSCrossRefGoogle Scholar
  66. 66.
    A. Gutiérrez-Rodríguez, E. Torres-Lomas, A. González-Sánchez, Int. J. Mod. Phys. A 25, 2551 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    G. Marandella, C. Schappacher, A. Strumia, Phys. Rev. D 72, 035014 (2005) and references thereinADSCrossRefGoogle Scholar
  68. 68.
    H.-Th. Janka et al., Phys. Rep. 442, 38 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    Hans-Thomas Janka, Annu. Rev. Nucl. Part. Sci. 62, 407 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    Naoki Itoh et al., Astrophys. J. Suppl. Ser. 102, 411 (1996)ADSCrossRefGoogle Scholar
  71. 71.
    T. Fischer et al., Astron. Astrophys. 517, A80 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    L. Huedepohl et al., Phys. Rev. Lett. 104, 251101 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    J. Gava et al., Phys. Rev. Lett. 103, 71101 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    D.W. Arnet, Annu. Rev. Astron. Astrophys. 27, 629 (1989)ADSCrossRefGoogle Scholar
  75. 75.
    Meng-Ru Wu et al., Phys. Rev. D 91, 065016 (2015)ADSCrossRefGoogle Scholar
  76. 76.
    G.G. Raffelt, Astrophys. J. 561, 890 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    M.-Th. Keil, G.G. Raffelt, H.-Th. Janka, Astrophys. J. 590, 971 (2003)ADSCrossRefGoogle Scholar
  78. 78.
    T. Fischer, G. Martínez-Pinedo, M. Hempel, M. Liebendorfer, Phys. Rev. D 85, 083003 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    J. Ellis, K. Olive, Nucl. Phys. B 223, 252 (1983)ADSCrossRefGoogle Scholar
  80. 80.
    G.G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles (University of Chicago Press, Chicago, USA, 1996) p. 664 and references thereinGoogle Scholar
  81. 81.
    A. Payez et al., J. Cosmol. Astropart. Phys. 02, 006 (2015)ADSCrossRefGoogle Scholar
  82. 82.
    T. Fischer et al., Phys. Rev. D 94, 085012 (2016)ADSCrossRefGoogle Scholar
  83. 83.
    G.G. Raffelt, Phys. Rep. 320, 319 (1999) and references thereinADSCrossRefGoogle Scholar
  84. 84.
    B.K. Kerimov et al., Phys. Lett. B 274, 477 (1992) and references thereinADSCrossRefGoogle Scholar
  85. 85.
    Alexander Heger et al., Astrophys. J. 696, 608 (2009)ADSCrossRefGoogle Scholar
  86. 86.
    S.I. Blinnikov, N.V. Dunina-Barkovskaya, Mon. Not. R. Astron. Soc. 266, 289 (1994)ADSCrossRefGoogle Scholar
  87. 87.
    Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  88. 88.
    D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, P. Haensel, Phys. Rep. 354, 1 (2001)ADSCrossRefGoogle Scholar
  89. 89.
    S. Esposito, G. Mangano, G. Miele, I. Picardi, O. Pisanti, Mod. Phys. Lett. A 17, 491 (2002)ADSCrossRefGoogle Scholar
  90. 90.
    S. Esposito, G. Mangano, G. Miele, I. Picardi, O. Pisanti, Nucl. Phys. B 658, 217 (2003)ADSCrossRefGoogle Scholar
  91. 91.
    A. Pérez, R. Gandhi, Phys. Rev. D 41, 2374 (1990)ADSCrossRefGoogle Scholar
  92. 92.
    M. Misiaszek, A. Odrzywolek, M. Kutschera, arXiv:astro-ph/0511555
  93. 93.
    A. Lenard, Phys. Rev. 90, 968 (1953)ADSCrossRefGoogle Scholar
  94. 94.
    A. Gutiérrez-Rodríguez et al., Phys. Rev. D 69, 073008 (2004)ADSCrossRefGoogle Scholar
  95. 95.
    A. Gutiérrez-Rodríguez et al., Mod. Phys. Lett. A 24, 135 (2009)ADSCrossRefGoogle Scholar
  96. 96.
    H.N. Long et al., Phys. Rev. D 53, 437 (1996)ADSCrossRefGoogle Scholar
  97. 97.
    A. Gutiérrez-Rodríguez et al., J. Phys. G 40, 035001 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    A. Gutiérrez-Rodríguez et al., Int. J. Mod. Phys. A 22, 3493 (2007)ADSCrossRefGoogle Scholar
  99. 99.
    L3 Collaboration (O. Adriani et al.), Phys. Lett. B 306, 187 (1993)ADSCrossRefGoogle Scholar
  100. 100.
    A. Gutiérrez-Rodríguez, Int. J. Theor. Phys. 54, 236 (2015)CrossRefGoogle Scholar
  101. 101.
    A. Gutiérrez-Rodríguez, M.A. Herández-Ruíz, A. González-Sánchez, in preparationGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • M. A. Hernández-Ruíz
    • 1
  • A. Gutiérrez-Rodríguez
    • 2
    Email author
  • A. González-Sánchez
    • 2
    • 3
  1. 1.Unidad Académica de Ciencias QuímicasUniversidad Autónoma de ZacatecasZacatecasMexico
  2. 2.Facultad de FísicaUniversidad Autónoma de ZacatecasZacatecasMexico
  3. 3.LERMA, CNRS UMR 8112PSL Research University, Observatoire de ParisParisFrance

Personalised recommendations