Advertisement

Azimuthal instabilities of the Gribov-Levin-Ryskin equation

  • Guillermo Gambini
  • Giorgio TorrieriEmail author
Regular Article - Theoretical Physics

Abstract.

We introduce the phenomenology of elliptic flow in nuclear collisions, and argue that its scaling across energies, rapidities and system sizes could be suggestive of a QCD-based rather than a hydrodynamical explanation. As a hypothesis for such an explanation, we show that the GLR equation develops unstable modes when the parton distribution function is generalized to depend on azimuthal angle. This generally means that the structure function acquires an azimuthal dependence. We argue that this process is a plausible alternative explanation for the origin of elliptic flow, one that naturally respects the scaling experimentally observed.

References

  1. 1.
    R. Snellings, New J. Phys. 13, 055008 (2011) arXiv:1102.3010 [nucl-ex]ADSCrossRefGoogle Scholar
  2. 2.
    R.D. de Souza, T. Koide, T. Kodama, arXiv:1506.03863 [nucl-th]
  3. 3.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. Lett. 109, 022301 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 724, 213 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 718, 795 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 111, 212301 (2013) arXiv:1303.1794 [nucl-ex]CrossRefGoogle Scholar
  7. 7.
    CMS Collaboration (V. Khachatryan), arXiv:1606.06198 [nucl-ex]
  8. 8.
    B.B. Back et al., Nucl. Phys. A 830, 967c (2009) (The PHOBOS Collaboration)ADSCrossRefGoogle Scholar
  9. 9.
    ATLAS Collaboration (G. Aad et al.), Phys. Rev. Lett. 116, 172301 (2016) arXiv:1509.04776 [hep-ex]ADSCrossRefGoogle Scholar
  10. 10.
    CMS Collaboration, Evidence for collectivity in pp collisions at the LHC, arXiv:1606.06198
  11. 11.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 86, 054908 (2012) arXiv:1206.5528 [nucl-ex]CrossRefGoogle Scholar
  12. 12.
    BRAHMS Collaboration (F. Videbaek), Nucl. Phys. A 830, 43C (2009)ADSCrossRefGoogle Scholar
  13. 13.
    G. Torrieri, B. Betz, M. Gyulassy, arXiv:1208.5996 [nucl-th]
  14. 14.
    C. Shen, U. Heinz, Phys. Rev. C 85, 054902 (2012) 86ADSCrossRefGoogle Scholar
  15. 15.
    D. Solanki, P. Sorensen, S. Basu, R. Raniwala, T.K. Nayak, Phys. Lett. B 720, 352 (2013) arXiv:1210.0512 [nucl-ex]ADSCrossRefGoogle Scholar
  16. 16.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 109, 122302 (2012) arXiv:1105.4126 [nucl-ex]CrossRefGoogle Scholar
  17. 17.
    G. Torrieri, Phys. Rev. C 82, 054906 (2010) arXiv:0911.4775 [nucl-th]ADSCrossRefGoogle Scholar
  18. 18.
    G. Torrieri, Phys. Rev. C 76, 024903 (2007) arXiv:nucl-th/0702013 ADSCrossRefGoogle Scholar
  19. 19.
    G. Torrieri, Phys. Rev. C 89, 024908 (2014) arXiv:1310.3529 [nucl-th]ADSCrossRefGoogle Scholar
  20. 20.
    G. Başar, D. Teaney, Phys. Rev. C 90, 054903 (2014) arXiv:1312.6770 [nucl-th]ADSCrossRefGoogle Scholar
  21. 21.
    P. Bozek, Eur. Phys. J. C 71, 1530 (2011) arXiv:1010.0405 [hep-ph]ADSCrossRefGoogle Scholar
  22. 22.
    K. Dusling, R. Venugopalan, Phys. Rev. D 87, 094034 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    G. Vujanovic, J.F. Paquet, G.S. Denicol, M. Luzum, S. Jeon, C. Gale, arXiv:1602.01455 [nucl-th]
  24. 24.
    O. Linnyk, E.L. Bratkovskaya, W. Cassing, Prog. Part. Nucl. Phys. 87, 50 (2016) arXiv:1512.08126 [nucl-th]ADSCrossRefGoogle Scholar
  25. 25.
    H. Song, U.W. Heinz, Phys. Rev. C 78, 024902 (2008) arXiv:0805.1756 [nucl-th]ADSCrossRefGoogle Scholar
  26. 26.
    F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    V. Greco, M. Mitrovski, G. Torrieri, Phys. Rev. C 86, 044905 (2012) arXiv:1201.4800 [nucl-th]ADSCrossRefGoogle Scholar
  28. 28.
    B. Betz, M. Gyulassy, G. Torrieri, Phys. Rev. C 84, 024913 (2011) arXiv:1102.5416 [nucl-th]ADSCrossRefGoogle Scholar
  29. 29.
    J. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge University Press, 2010)Google Scholar
  30. 30.
    COMPASS Collaboration (V.Y. Alexakhin et al.), Phys. Rev. Lett. 94, 202002 (2005) arXiv:hep-ex/0503002 CrossRefGoogle Scholar
  31. 31.
    A. Kovner, M. Lublinsky, Phys. Rev. D 83, 034017 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    C. Andrés, J. Dias de Deus, A. Moscoso, C. Pajares, C.A. Salgado, EPJ Web of Conference 90, 08003 (2015) arXiv:1405.2177 [hep-ph]CrossRefGoogle Scholar
  33. 33.
    M. Gyulassy, P. Levai, I. Vitev, T.S. Biró, Nucl. Phys. A 931, 943 (2014) arXiv:1407.7306 [hep-ph]ADSCrossRefGoogle Scholar
  34. 34.
    Z.-t. Liang, X.N. Wang, Phys. Rev. D 75, 094002 (2007) arXiv:hep-ph/0609225 ADSCrossRefGoogle Scholar
  35. 35.
    Y.V. Kovchegov, E. Levin, Quantum Chromodynamics at High Energy (Cambridge University Press, 2012)Google Scholar
  36. 36.
    L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    J. Jalilian-Marian, Y.V. Kovchegov, Prog. Part. Nucl. Phys. 56, 104 (2006) arXiv:hep-ph/0505052 ADSCrossRefGoogle Scholar
  38. 38.
    F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Annu. Rev. Nucl. Part. Sci. 60, 463 (2010) arXiv:1002.0333 [hep-ph]ADSCrossRefGoogle Scholar
  39. 39.
    A. Krasnitz, Y. Nara, R. Venugopalan, Phys. Lett. B 554, 21 (2003) arXiv:hep-ph/0204361 ADSCrossRefGoogle Scholar
  40. 40.
    J. Berger, A. Stasto, Phys. Rev. D 83, 034015 (2011) arXiv:1010.0671 [hep-ph]ADSCrossRefGoogle Scholar
  41. 41.
    E. Gotsman, M. Kozlov, E. Levin, U. Maor, E. Naftali, Nucl. Phys. A 742, 55 (2004) arXiv:hep-ph/0401021 ADSCrossRefGoogle Scholar
  42. 42.
    K.J. Golec-Biernat, A.M. Stasto, Nucl. Phys. B 668, 345 (2003) arXiv:hep-ph/0306279 ADSCrossRefGoogle Scholar
  43. 43.
    A. Adare, M. Luzum, H. Petersen, Phys. Scr. 87, 048001 (2013) arXiv:1212.5388 ADSCrossRefGoogle Scholar
  44. 44.
    A. Dumitru, L. McLerran, V. Skokov, Phys. Lett. B 743, 134 (2015) arXiv:1410.4844 [hep-ph]ADSCrossRefGoogle Scholar
  45. 45.
    K. Dusling, W. Li, B. Schenke, Int. J. Mod. Phys. E 25, 1630002 (2016) arXiv:1509.07939 [nucl-ex]ADSCrossRefGoogle Scholar
  46. 46.
    A.A. Matyshev, E. Fohtung, arXiv:0910.0365v1 [math-ph]
  47. 47.
    E. Levin, J. Phys. Conf. Ser. 5, 127 (2005) arXiv:hep-ph/0408039 CrossRefGoogle Scholar
  48. 48.
    A. Esposito, M. Gyulassy, Phys. Lett. B 747, 433 (2015) arXiv:1505.03734 [hep-ph]ADSCrossRefGoogle Scholar
  49. 49.
    P. Bozek, W. Broniowski, G. Torrieri, Phys. Rev. Lett. 111, 172303 (2013) arXiv:1307.5060 [nucl-th]ADSCrossRefGoogle Scholar
  50. 50.
    X. Ji, Annu. Rev. Nucl. Part. Sci. 54, 413 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    U. Frisch, Turbulence (Cambridge University Press, 1996)Google Scholar
  52. 52.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 111, 232302 (2013) arXiv:1306.4145 [nucl-ex]ADSCrossRefGoogle Scholar
  53. 53.
    J. Schukraft, A. Timmins, S.A. Voloshin, Phys. Lett. B 719, 394 (2013) arXiv:1208.4563 [nucl-ex]ADSCrossRefGoogle Scholar
  54. 54.
    V. Koch, Nucl. Phys. A 830, 479C (2009) arXiv:0908.3176 [nucl-th]ADSCrossRefGoogle Scholar
  55. 55.
    J. Liao, V. Koch, Phys. Rev. Lett. 103, 042302 (2009) arXiv:0902.2377 [nucl-th]ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.IFGWState University of CampinasCampinasBrazil

Personalised recommendations