Advertisement

Hyperfine structure of electronic levels and the first measurement of the nuclear magnetic moment of 63Ni

  • A. B. D’yachkov
  • V. A. Firsov
  • A. A. Gorkunov
  • A. V. Labozin
  • S. M. Mironov
  • E. E. Saperstein
  • S. V. Tolokonnikov
  • G. O. TsvetkovEmail author
  • V. Y. Panchenko
Regular Article - Experimental Physics

Abstract.

Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical \(3d^{8}4s^{2} {}^{3}F_{4}\rightarrow 3d^{8}4s4p {}^{3}G^{\rm o}_{3}\) and \(3d^{9}4s {}^{3}D_{3}\rightarrow 3d^{8}4s4p {}^{3}G^{\rm o}_{3}\) transitions of 63Ni and 61Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of 63Ni for the first time: \(\mu=+0.496(5)\mu_{\rm N}\). The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems.

References

  1. 1.
  2. 2.
    N.J. Stone, Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments (IAEA Nuclear Data Section, 2014)Google Scholar
  3. 3.
    J. Bleck, R. Michaelsen, W. Ribbe, W. Zeitz, Phys. Lett. B 32, 41 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    W. Müller, H.H. Bertschat, H. Haas, B. Spellmeyer, W.-D. Zeitz, Phys. Rev. B 40, 7633 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 1 (Benjamin, New York, 1969)Google Scholar
  6. 6.
    A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967)Google Scholar
  7. 7.
    I.S. Towner, Phys. Rep. 155, 264 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    I.N. Borzov, E.E. Saperstein, S.V. Tolokonnikov, Phys. At. Nucl. 71, 469 (2008)CrossRefGoogle Scholar
  9. 9.
    I.N. Borzov, E.E. Saperstein, S.V. Tolokonnikov, G. Neyens, N. Severijns, Eur. Phys. J. A 45, 159 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    V.A. Khodel, E.E. Saperstein, Phys. Rep. 92, 183 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    A. Jokinen, A-H. Evensen, E. Kugler, J. Lettry, H. Ravn, P. Van Duppen, N. Erdman, Y. Jading, S. Köhler, K-L. Kratz, N. Trautman, A. Wöhr, V.N. Fedoseyev, V.I. Mishin, V. Tikhonov, ISOLDE-Collaboration, Nucl. Instrum. Methods Phys. Res. B 126, 95 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    M.D. Seliverstov, A.N. Andreyev, N. Barré, A.E.S. Dean, H. de Witte, D.V. Fedorov, V.N. Fedoseyev, L.M. Fraile, S. Franchoo, J. Genevey, G. Huber, M. Huyse, U. Köster, P. Kunz, S.R. Lesher, B.A. Marsh, I. Mukha, B. Roussière, J. Sauvage, I. Stefanescu, K. Van de Vel, P. Van Duppen, Yu.M. Volkov, Eur. Phys. J. A 41, 315 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Avgoulea, Yu.P. Gangrsky, K.P. Marinova, S.G. Zemlyanoi, S. Fritzsche, D. Iablonskyi, C. Barbieri, E.C. Simpson, P.D. Stevenson, J. Billowes, E.C. Simpson, P. Campbell, B. Cheal, B. Tordoff, M.L. Bissel, D.H. Forest, M.D. Gardner, G. Tungate, J. Huikari, A. Nieminen, H. Penttilä, J. Äystö, J. Phys. G 38, 025104 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    T.J. Procter, J. Billowes, M.L. Bissell, K. Blaum, F. C. Charlwood, B. Cheal, K.T. Flanagan, D.H. Forest, S. Fritzsche, Ch. Geppert, H. Heylen, M. Kowalska, K. Kreim, A. Krieger, J. Krämer, K.M. Lynch, E. Mané, I.D. Moore, R. Neugart, G. Neyens, W. Nörtershäuser, J. Papuga, M.M. Rajabali, H.H. Stroke, P. Vingerhoets, D.T. Yordanov, M. Záková, Phys. Rev. C 86, 034329 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    J. Papuga, M.L. Bissell, K. Kreim, C. Barbieri, K. Blaum, M. De Rydt, T. Duguet, R.F. Garcia Ruiz, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, M.M. Rajabali, R. Sánchez, N. Smirnova, V. Somà, D.T. Yordanov, Phys. Rev. C 90, 034321 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    H. Heylen, C. Babcock, J. Billowes, M.L. Bissell, K. Blaum, P. Campbell, B. Cheal, R.F. Garcia Ruiz, Ch. Geppert, W. Gins, M. Kowalska, K. Kreim, S.M. Lenzi, I.D. Moore, R. Neugart, G. Neyens, W. Nörtershäuser, J. Papuga, D.T. Yordanov, Phys. Rev. C 92, 044311 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    I. Sobelman, Introduction to Theory of Atomic Spectra (Nauka, Moscow, 1977)Google Scholar
  18. 18.
    B. Cheal, K.T Flanagan, J. Phys. G 37, 113101 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J.R. Persson, At. Data Nucl. Data Tables 99, 62 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    L.E. Drain, Phys. Lett. 11, 114 (1964)ADSCrossRefGoogle Scholar
  21. 21.
  22. 22.
    O. Axner, J. Gustafsson, N. Omenetto, J.D. Winefordner, Spectrochim. Acta Part B 59, 1 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    W.J. Childs, L.S Goodman, Phys. Rev. 170, 136 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, 2nd edition (Nauka, Moscow, 1983)Google Scholar
  25. 25.
    A.B. Migdal, E.E. Saperstein, M.A. Troitsky, D.N. Voskresensky, Phys. Rep. 192, 179 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    S.A. Fayans, S.V. Tolokonnikov, E.L. Trykov, D. Zawischa, Nucl. Phys. A 676, 49 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    S.V. Tolokonnikov, E.E. Saperstein, Phys. At. Nucl. 73, 1684 (2010)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • A. B. D’yachkov
    • 1
  • V. A. Firsov
    • 1
  • A. A. Gorkunov
    • 1
  • A. V. Labozin
    • 1
  • S. M. Mironov
    • 1
  • E. E. Saperstein
    • 1
  • S. V. Tolokonnikov
    • 1
  • G. O. Tsvetkov
    • 1
    Email author
  • V. Y. Panchenko
    • 1
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations