Advertisement

Entropy production and effective viscosity in heavy-ion collisions

  • Yu. B. IvanovEmail author
  • A. A. Soldatov
Regular Article - Theoretical Physics

Abstract.

The entropy production and an effective viscosity in central Au+Au collisions are estimated in a wide range of incident energies 3.3 GeV \(\le \sqrt{s_{NN}}\le\) 39 GeV. The simulations are performed within a three-fluid model employing three different equations of state with and without deconfinement transition, which are equally good in the reproduction of the momentum-integrated elliptic flow of charged particles in the considered energy range. It is found that more than 80% entropy is produced during a short early collision stage which lasts ∼ 1 fm/c at the highest considered energies \(\sqrt{s_{NN}}\gtrsim 20\) GeV. The estimated values of the viscosity-to-entropy ratio (\(\eta\)/s) are approximately the same in all considered scenarios. At the final stages of the system expansion they range from ∼ 0.05 at the highest considered energies to ∼ 0.5 at the lowest ones. It is found that the \(\eta\)/s ratio decreases with the temperature (T) rise, approximately as \(\sim 1/T^{4}\), and exhibits a rather weak dependence on the net-baryon density.

References

  1. 1.
    J. Berges, J.P. Blaizot, F. Gelis, J. Phys. G 39, 085115 (2012) arXiv:1203.2042 [hep-ph]ADSCrossRefGoogle Scholar
  2. 2.
    K. Fukushima, arXiv:1603.02340 [nucl-th]
  3. 3.
    U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013) arXiv:1301.2826 [nucl-th]ADSCrossRefGoogle Scholar
  4. 4.
    G. Kestin, U.W. Heinz, Eur. Phys. J. C 61, 545 (2009) arXiv:0806.4539 [nucl-th]ADSCrossRefGoogle Scholar
  5. 5.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 86, 054908 (2012) arXiv:1206.5528 [nucl-ex]CrossRefGoogle Scholar
  6. 6.
    H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, H. Stocker, Phys. Rev. C 78, 044901 (2008) arXiv:0806.1695 [nucl-th]ADSCrossRefGoogle Scholar
  7. 7.
    I.A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Phys. Rev. C 91, 064901 (2015) arXiv:1502.01978 [nucl-th]ADSCrossRefGoogle Scholar
  8. 8.
    K. Itakura, O. Morimatsu, H. Otomo, Phys. Rev. D 77, 014014 (2008) arXiv:0711.1034 [hep-ph]ADSCrossRefGoogle Scholar
  9. 9.
    A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 845, 106 (2010) arXiv:1003.3531 [nucl-th]ADSCrossRefGoogle Scholar
  10. 10.
    G.S. Denicol, C. Gale, S. Jeon, J. Noronha, Phys. Rev. C 88, 064901 (2013) arXiv:1308.1923 [nucl-th]ADSCrossRefGoogle Scholar
  11. 11.
    G.P. Kadam, H. Mishra, Phys. Rev. C 92, 035203 (2015) arXiv:1506.04613 [hep-ph]ADSCrossRefGoogle Scholar
  12. 12.
    Y.B. Ivanov, A.A. Soldatov, Phys. Rev. C 91, 024914 (2015) arXiv:1401.2265 [nucl-th]ADSCrossRefGoogle Scholar
  13. 13.
    Yu.B. Ivanov, V.N. Russkikh, V.D. Toneev, Phys. Rev. C 73, 044904 (2006) arXiv:nucl-th/0503088 ADSCrossRefGoogle Scholar
  14. 14.
    V.M. Galitsky, I.N. Mishustin, Sov. J. Nucl. Phys. 29, 181 (1979)Google Scholar
  15. 15.
    A.S. Khvorostukhin, V.V. Skokov, K. Redlich, V.D. Toneev, Eur. Phys. J. C 48, 531 (2006) arXiv:nucl-th/0605069 ADSCrossRefGoogle Scholar
  16. 16.
    FOPI Collaboration (A. Andronic et al.), Phys. Lett. B 612, 173 (2005) arXiv:nucl-ex/0411024 ADSCrossRefGoogle Scholar
  17. 17.
    Y.B. Ivanov, A.A. Soldatov, Eur. Phys. J. A 52, 117 (2016) arXiv:1604.03261 [nucl-th]ADSCrossRefGoogle Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987)Google Scholar
  19. 19.
    D.H. Rischke, Lect. Notes Phys. 516, 21 (1999) arXiv:nucl-th/9809044 ADSCrossRefGoogle Scholar
  20. 20.
    Yu.B. Ivanov, Phys. Rev. C 87, 064904 (2013) arXiv:1302.5766 [nucl-th]ADSCrossRefGoogle Scholar
  21. 21.
    Yu.B. Ivanov, Phys. Rev. C 87, 064905 (2013) arXiv:1304.1638 [nucl-th]ADSCrossRefGoogle Scholar
  22. 22.
    V.N. Russkikh, Yu.B. Ivanov, Phys. Rev. C 76, 054907 (2007) arXiv:nucl-th/0611094 ADSCrossRefGoogle Scholar
  23. 23.
    Yu.B. Ivanov, V.N. Russkikh, Phys. At. Nucl. 72, 1238 (2009) arXiv:0810.2262 [nucl-th]CrossRefGoogle Scholar
  24. 24.
    S. Horvat, V.K. Magas, D.D. Strottman, L.P. Csernai, Phys. Lett. B 692, 277 (2010) arXiv:1007.4754 [nucl-th]ADSCrossRefGoogle Scholar
  25. 25.
    L.P. Csernai, D.D. Strottman, C. Anderlik, Phys. Rev. C 85, 054901 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M. Reiter, A. Dumitru, J. Brachmann, J.A. Maruhn, H. Stöcker, W. Greiner, Nucl. Phys. A 643, 99 (1998) arXiv:nucl-th/9806010 ADSCrossRefGoogle Scholar
  27. 27.
    P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005) arXiv:hep-th/0405231 ADSCrossRefGoogle Scholar
  28. 28.
    L.M. Satarov, Yad. Fiz. 52, 412 (1990) (Sov. J. Nucl. Phys. 52Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations