Neutron yield of thick 12C and 13C targets with 20 and 30 MeV deuterons

  • G. Lhersonneau
  • T. MalkiewiczEmail author
  • M. Fadil
  • D. Gorelov
  • P. Jones
  • P. Z. Ngcobo
  • J. Sorri
  • W. H. Trzaska
Regular Article - Experimental Physics


The neutron yield of thick targets of carbon, natural and enriched in 13C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a 12C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a 13C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the 12C and 13C targets.


  1. 1.
    ISOLDE, the radioactive beam facility: Scholar
  2. 2.
    T. Stora, E. Noah, R. Hodak, T.Y. Hirsh, M. Hass, V. Kumar, K. Singh, S. Vaintraub, P. Delahaye, H. Frånberg-Delahaye, M.-G. Saint-Laurent, G. Lhersonneau, Europhys. Lett. 98, 32001 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    I.D. Moore, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, A. Kankainen, V.S. Kolhinen, J. Koponen, H. Penttilä, I. Pohjalainen, M. Reponen, J. Rissanen, A. Saastamoinen, S. Rinta-Antila, V. Sonnenschein, J. Äystö, Nucl. Instrum. Methods Phys. Res. B 317, 208 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Blumenfeld, G. Fortuna, A design study for a European Isotope Separation On-Line Radiaoactive Beam Facility, edited by J. Cornell (GANIL, Caen, France, November 2009)
  5. 5.
    S. Galès, Nucl. Phys. A 834, 717 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    X. Ledoux, M. Aiche, M. Avrigeanu, V. Avrigeanu, L. Audouin, E. Balanzat, B. Ban-d'État, G. Ban, G. Barreau, E. Bauge et al., AIP Conf. Proc. 1412, 55 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    X. Ledoux, M. Aiche, M. Avrigeanu, V. Avrigeanu, L. Audouin, E. Balanzat, B. Ban-d'État, G. Ban, G. Barreau, E. Bauge et al., Nucl. Data Sheets 119, 353 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    C. Gustavsson, S. Pomp, G. Scian, F.R. Lecolley, U. Tippawan, Y. Watanabe, Phys. Scr. 2012, T150 (2012)Google Scholar
  9. 9.
    ARCHADE, Advanced Resource Center for HADrontherapy in Europe:
  10. 10.
    F. Minato, Y. Nagai, J. Phys. Soc. Jpn. 79, 093201 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    IFMIF, International Fusion Materials Irradiation Facility:
  12. 12.
    ITER, International Thermonuclear Experimental Reactor:
  13. 13.
    National Nuclear Data Center:
  14. 14.
    A. Bracco, A. Pisent, LNL-INFN(REP) 181/02, Legnaro, Italy, 2002,
  15. 15.
    O. Alyakrinskiy, A. Andrighetto, M. Barbui, S. Brandenburg, M. Cinausero, B. Dalena, P. Dendooven, E. Fioretto, G. Lhersonneau, W. Lyapind, G. Prete, G. Simonetti, L. Stroe, L.B. Tecchio, W.H. Trzaska, Nucl. Instrum. Methods Phys. Res. A 547, 616 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    G. Lhersonneau, T. Malkiewicz, D. Vakhtin, V. Plockhoi, O. Alyakrinskiy, C. Cinausero, Ya. Kandiev, H. Kettunen, S. Khlebnikov, H. Penttilä, G. Prete, V. Rizzi, S. Samarin, L. Teccchio, W.H. Trzaska, G. Tyurin, Nucl. Instrum. Methods Phys. Res. A 576, 371 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    G. Lhersonneau, T. Malkiewicz, K. Kolos, M. Fadil, H. Kettunen, M.G. Saint-Laurent, A. Pichard, W.H. Trzaska, G. Tyurin, L. Cousin, Nucl. Instrum. Methods Phys. Res. A 603, 228 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    G. Lhersonneau, T. Malkiewicz, P. Jones, S. Ketelhut, W.H. Trzaska, Eur. Phys. J. A 48, 116 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    G. Lhersonneau, T. Malkiewicz, P. Jones, P. Karvonen, S. Ketelhut, O. Bajeat, M. Fadil, S. Gaudu, M.G. Saint-Laurent, W.H. Trzaska, Nucl. Instrum. Methods Phys. Res. A 698, 224 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    G. Lhersonneau, T. Malkiewicz, W.H. Traska, Hyperfine Interact. 223, 253 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    A. Donzella, M. Barbui, F. Bocci, G. Bonomi, M. Cinausero, D. Fabris, A. Fontana, E. Giroletti, M. Lunardon, S. Moretto, G. Nebbia, M.M. Necchi, S. Pesente, G. Prete, V. Rizzi, G. Viesti, A. Zenoni, Nucl. Instrum. Methods Phys. Res. A 613, 58 (2010)ADSCrossRefGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
    X-ray attenuation coefficients tables:
  25. 25.
    Range and stopping power calculator:
  26. 26.
    N. Pauwels, F. Clapier, J. Proust, M. Mirea,, N. Pauwels, PhD Thesis, IPN-Orsay, IPNO-T-00-12, 2000
  27. 27.
    Monte Carlo N-Particle Transport Code System for Multiparticle and High Energy Applications, Version 2.6.0 (November 2007), Oak Ridge National Laboratory (ORNL/RSICC), USA, 2007Google Scholar
  28. 28.
    D. Gorelov, Nuclear fisssion studies with the IGISOL method and JYFLTRAP, PhD Thesis, (University of Jyväskylä, 2015) Department of Physics Research Report, No. 12/2015Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • G. Lhersonneau
    • 1
  • T. Malkiewicz
    • 2
    Email author
  • M. Fadil
    • 1
  • D. Gorelov
    • 3
  • P. Jones
    • 4
  • P. Z. Ngcobo
    • 4
  • J. Sorri
    • 3
  • W. H. Trzaska
    • 3
  1. 1.GANILCaen Cedex 05France
  2. 2.CSC - IT Center for Science Ltd.EspooFinland
  3. 3.Department of PhysicsUniversity of JyvaskylaJyvaskylaFinland
  4. 4.iThemba Laboratory for Accelerator Based ScienceWestern CapeSouth Africa

Personalised recommendations